• Opto-Electronic Engineering
  • Vol. 45, Issue 10, 170662 (2018)
Ma Wanzhuo1、2、*, Wang Tianshu1、2, Wang Furen1、3, Wang Chengbo2, Zhang Jing1、3, and Jiang Huilin1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170662 Cite this Article
    Ma Wanzhuo, Wang Tianshu, Wang Furen, Wang Chengbo, Zhang Jing, Jiang Huilin. Tunable high repetition rate actively mode-locked fiber laser at 2 μm[J]. Opto-Electronic Engineering, 2018, 45(10): 170662 Copy Citation Text show less
    References

    [1] Geng J H, Wang Q, Jiang S B. 2μm fiber laser sources and their applications[J]. Proceedings of SPIE, 2011, 8164: 816409.

    [2] Nakazawa M, Yoshida M, Hirooka T. The nyquist laser[J]. Optica, 2014, 1(1): 15–22.

    [3] Coppinger F, Bhushan A S, Jalali B. Photonic time stretch and its application to analog-to-digital conversion[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1309–1314.

    [4] Delfyett P J, Gee S, Choi M T, et al. Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications[J]. Journal of Lightwave Technology, 2006, 24(7): 2701–2719.

    [5] Ozdur I, Akbulut M, Hoghooghi N, et al. A semiconductor-based 10-GHz optical comb source with sub 3-fs shot-noise-limited timing jitter and ~500-Hz comb linewidth[J]. IEEE Photonics Technology Letters, 2010, 22(6): 431–433.

    [6] Zhang M, Kelleher E J R, Torrisi F, et al. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Optics Express, 2012, 20(22): 25077–25084.

    [7] Gumenyuk R, Vartiainen I, Tuovinen H, et al. Dissipative dispersion- managed soliton 2μm thulium/holmium fiber laser[J]. Optics Letters, 2011, 36(5): 609–611.

    [8] Yan Z Y, Sun B, Li X H, et al. Widely tunable Tm-doped mode-locked all-fiber laser[J]. Scientific Reports, 2016, 6: 27245.

    [9] Wang X, Zhou P, Wang X L, et al. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation[J]. Optics Express, 2014, 22(5): 6147–6153.

    [10] Zhou Y, Wang A T, Gu C, et al. Actively mode-locked all fiber laser with cylindrical vector beam output[J]. Optics Letters, 2016, 41(3): 548–550.

    [11] Kuznetsov A G, Kharenko D S, Podivilov E V, et al. Fifty-ps Raman fiber laser with hybrid active-passive mode locking[J]. Optics Express, 2016, 24(15): 16280–16285.

    [12] Wang X, Zhou P, Wang X L, et al. All-fiber actively mode-locked Tm-doped pulse laser at 2μm[J]. High Power Laser and Particle Beams, 2013, 25(10): 2477–2478.

    [13] Wang X, Zhou P, Wang X L, et al. 2-μm Tm-doped all-fiber pulse laser with active mode-locking and relaxation oscillation modulating[J]. IEEE Photonics Journal, 2013, 5(6): 1502206.

    [14] Kneis C, Donelan B, Berrou A, et al. Actively mode-locked Tm3+-doped silica fiber laser with wavelength-tunable, high average output power[J]. Optics Letters, 2015, 40(7): 1464–1467.

    [15] Wang Y, Set S Y, Yamashita S. Active mode-locking via pump modulation in a Tm-doped fiber laser[J]. APL Photonics, 2016, 1(7): 071303.

    [16] Wang R X. Research on the theory and applications of the novel actively mode-locked fiber laser[D]. Beijing: Beijing University of Posts and Telecommunications, 2015.

    CLP Journals

    [1] Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070

    Ma Wanzhuo, Wang Tianshu, Wang Furen, Wang Chengbo, Zhang Jing, Jiang Huilin. Tunable high repetition rate actively mode-locked fiber laser at 2 μm[J]. Opto-Electronic Engineering, 2018, 45(10): 170662
    Download Citation