• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210905 (2022)
Wei Shi*, Shijie Fu*, Quan Sheng, Chaodu Shi, Junxiang Zhang, Lu Zhang, and Jianquan Yao
Author Affiliations
  • School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/IRLA20210905 Cite this Article
    Wei Shi, Shijie Fu, Quan Sheng, Chaodu Shi, Junxiang Zhang, Lu Zhang, Jianquan Yao. Research progress on high-performance single-frequency fiber lasers: 2017-2021 (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210905 Copy Citation Text show less
    References

    [1] W Shi, Q Fang, X S Zhu, et al. Fiber lasers and their applications [Invited]. Applied Optics, 53, 6554-6568(2014).

    [2] Y Jeong, J Nilsson, J K Sahu, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W. Journal of Selected Topics in Quantum Electronics, 13, 546-551(2007).

    [3] M Steinke, H Tünnermann, V Kuhn, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors. Journal of Selected Topics in Quantum Electronics, 24, 1-13(2018).

    [4] S J Fu, W Shi, Y Feng, et al. Review of recent progress on single-frequency fiber lasers [Invited]. Journal of Optical Society of America B, 34, A49-A62(2017).

    [5] Changsheng Yang, Xu Cen, Shanhui Xu, et al. Research progress of single-frequency fiber laser. Acta Optica Sinica, 41, 0114002(2021).

    [6] Wenchang Lai, Pengfei Ma, Hu Xiao, et al. High-power narrow-linewidth fiber laser technology. High Power Laser and Particle Beams, 32, 7-28(2020).

    [7] S Loranger, V Karpov, G W Schinn, et al. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers. Optics Letters, 42, 3864-3867(2017).

    [8] Z H Sun, X T Jiang, Q Wen, et al. Single frequency fiber laser based on an ultrathin metal-organic framework. Journal of Materials Chemistry C, 7, 4662-4666(2019).

    [9] J Ward, O Benson. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser & Photonics Reviews, 5, 553-570(2011).

    [10] M C Collodo, F Sedlmeir, B Sprenger, et al. Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser. Optics Express, 22, 19277-19283(2014).

    [11] Wei Shi, Shijie Fu, Qiang Fang, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber. Infrared and Laser Engineering, 45, 1003001(2016).

    [12] B Sun, J Jia, J Huang, et al. A 1030 nm single-frequency distributed Bragg reflector Yb-doped silica fiber laser. Laser Physics, 27, 105105(2017).

    [13] N G Boetti, D Pugliese, E Ceci-Ginistrelli. Highly doped phosphate glass fibers for compact lasers and amplifiers: A review. Applied Sciences, 7, 1295(2017).

    [14] Zhu X S, ChavezPirson A, Milanese D, et al. NonSilica Oxide Glass Fiber Laser Sources: Part II [M]Advances in Glass Science Technology. New Yk: IntechOpen, 2018.

    [15] A Schülzgen, L Li, V L Temyanko, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber. Optics Express, 14, 7087-7092(2006).

    [16] J Ballato, T Hawkins, P Foy, et al. On the fabrication of all-glass optical fibers from crystals. Journal of Applied Physics, 105, 053110(2009).

    [17] Y M Zhang, W W Wang, J Li, et al. Multi‐component yttrium aluminosilicate (YAS) fiber prepared by melt‐in‐tube method for stable single‐frequency laser. Journal of the American Ceramic Society, 102, 2551-2557(2018).

    [18] Z J Liu, Y Y Xie, Z H Cong, et al. 110  mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064  nm. Optics Letters, 44, 4307-4310(2019).

    [19] Y Wan, J X Wen, C Jiang, et al. Over 255  mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber. Photonics Research, 9, 649-656(2021).

    [20] Y Y Xie, Z H Cong, Z G Zhao, et al. Preparation of Er: YAG crystal-derived all-glass silica fibers for a 1550-nm single-frequency laser. Journal of Lightwave Technology, 39, 4769-4775(2021).

    [21] T Qiu, A Schülzgen, L Li, et al. Generation of watt-level single longitudinal mode output from cladding pumped short fiber lasers. Optics Letters, 30, 2748-2750(2005).

    [22] X C Guan, C S Yang, T Qiao, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm. Optics Express, 26, 6817-6825(2018).

    [23] S J Fu, X S Zhu, J Zong, et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser. Optics Express, 29, 30637-30643(2021).

    [24] J Zhang, Q Sheng, L Zhang, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm. Advanced Photonics Research, 2100256(2021).

    [25] Y J Li, L G Huang, L Gao, et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring. Optics Express, 26, 26896-26906(2018).

    [26] C D Shi, Q Sheng, S J Fu, et al. Power scaling and spectral linewidth suppression of hybrid Brillouin/thulium fiber laser. Optics Express, 28, 2948-2955(2020).

    [27] R L Ma, S X Yuan, S Zhu, et al. Tunable sub-kHz single-mode fiber laser based on a hybrid microbottle resonator. Optics Letters, 43, 5315-5318(2018).

    [28] L Y Hao, X H Wang, K P Jia, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics. Optics Letters, 46, 3769-3772(2021).

    [29] T Feng, D Wei, W W Bi, et al. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter. Optics Express, 29, 31179-31200(2021).

    [31] Q L Zhao, Z T Zhang, B Wu, et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection. Photonics Research, 6, 326-331(2018).

    [32] Q Zhang, Y B Hou, W H Song, et al. Pump RIN coupling to frequency noise of a polarization-maintaining 2 µm single frequency fiber laser. Optics Express, 29, 3221-3229(2021).

    [33] C S Yang, X C Guan, W Lin, et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser. Optics Express, 25, 29078-29085(2017).

    [34] S J Fu, X S Zhu, J Zong, et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm. Journal of Lightwave Technology, 39, 1808-1813(2021).

    [35] C D Shi, S J Fu, G N Shi, et al. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices. Optik, 187, 291-296(2019).

    [36] Y Tao, M Jiang, C Li, et al. Low-threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser. Optics Letters, 46, 3705-3708(2021).

    [37] L Zhang, J X Zhang, Q Sheng, et al. Watt-level 1.7 μm single-frequency thulium-doped fiber oscillator. Optics Express, 29, 27048-27056(2021).

    [38] D D Hudson, R J Williams, M J Withford, et al. Single-frequency fiber laser operating at 2.9 μm. Optics Letters, 38, 2388-2390(2013).

    [39] M Bernier, V Michaud-Belleau, S Levasseur, et al. All-fiber DFB laser operating at 2.8 μm. Optics Letters, 40, 81-84(2015).

    [40] L Zhang, S Z Cui, C Liu, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Optics Express, 21, 5456-5462(2013).

    [41] V I Kovalev, R G Harrison. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers. Optics Letters, 31, 161-163(2006).

    [42] T Theeg, H Sayinc, J Neumann, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power. IEEE Photonics Technology Letters, 24, 1864-1867(2012).

    [43] C Robin, I Dajani. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications. Optics Letters, 36, 2641-2643(2011).

    [44] M Leigh, W Shi, J Zong, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core. Applied Physics Letters, 92, 181108(2008).

    [45] C Robin, I Dajani, B Pulford, et al. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Optics Letters, 39, 666-669(2014).

    [46] Creeden D, Pretius H, Limongelli J, et al. Single frequency 1560 nm Er: Yb fiber amplifier with 207 W output power 50.5% slope efficiency[C]Proc of SPIE, 2016, 9728: 97282L.

    [47] G D Goodno, L D Book, J E Rothenberg. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Optics Letters, 34, 1204-1206(2009).

    [48] W C Lai, P F Ma, W Liu, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber. Optics Express, 28, 20908-20919(2020).

    [49] C D Shi, S J Fu, D Xun, et al. 435 W single-frequency all-fiber amplifier at 1064 nm based on cascaded hybrid active fibers. Optics Communications, 502, 127428(2021).

    [50] X C Guan, C S Yang, Q Gu, et al. 316 W high-brightness narrow-linewidth linearly-polarized all-fiber single-frequency laser at 1950 nm. Applied Physics Express, 14, 1112004(2021).

    [51] B Pulford, R Holten, T Matniyaz, et al. kW-level monolithic single-mode narrow-linewidth all-solid photonic bandgap fiber amplifier. Optics Letters, 46, 4458-4461(2021).

    [52] Z Xing, X Wang, S Lou, et al. Large-mode-area all-solid anti-resonant fiber with single-mode operation for high-power fiber lasers. Optics Letters, 46, 1908-1911(2021).

    [53] L Zeng, Z Pan, X Xi, et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber. Optics Letters, 46, 1393-1396(2021).

    [54] J Ye, X Ma, Y Zhang, et al. From spectral broadening to recompression: Dynamics of incoherent optical waves propagating in the fiber. PhotoniX, 2, 15(2021).

    [55] X Zeng, S Cui, X Cheng, et al. Spectral compression by phase doubling in second harmonic generation. Optics Letters, 47, 222-225(2022).

    [56] O D Varona, W Fittkau, P Booker, et al. Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors. Optics Express, 25, 24880-24892(2017).

    [57] F Wellmann, M Steinke, F Meylahn, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Optics Express, 27, 28523-28533(2019).

    [58] X Yang, Z Lei, S Cui, et al. Sodium guide star laser pulsed at Larmor frequency. Optics Letters, 42, 4351-4354(2017).

    [59] X Guan, Q Zhao, W Lin, et al. High-efficiency and high-power single-frequency fiber laser at 1.6μm based on cascaded energy-transfer pumping. Photonics Research, 8, 414-420(2020).

    [60] P Benoit, S L Méhauté, J L Gout, et al. All-fiber laser source at 1645 nm for lidar measurement of methane concentration and wind velocity. Optics Letters, 46, 126-129(2021).

    [61] E Petersen, W Shi, A Chavez-Pirson, et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses. Applied Optics, 51, 531-534(2012).

    [62] Q Fang, W Shi, K Kieu, et al. High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling. Optics Express, 20, 16410-16420(2012).

    [63] W Lee, J Geng, S Jiang, et al. 1.8 mJ, 3.5 kW single-frequency optical pulses at 1572 nm generated from an all-fiber MOPA system. Optics Letters, 43, 2264-2267(2018).

    [64] P Kim, R Joona, N Teppo, et al. Single-frequency 100 ns/0.5 mJ laser pulses from all-fiber double clad ytterbium doped tapered fiber amplifier. Optics Express, 27, 31532-31541(2019).

    [65] M Khudyakov, D Lipatov, A Guryanov, et al. Highly efficient 37-kW-peak-power single-frequency combined Er/Er-Yb fiber amplifier. Optics Letters, 45, 1782-1785(2020).

    [66] L Huang, P F Ma, R T Su, et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser. Optics Express, 29, 761-782(2021).

    [67] C D Shi, H Tian, Q Sheng, et al. High-power single-frequency pulsed fiber MOPA via SPM suppression based on a triangular pulse. Results in Physics, 28, 104594(2021).

    CLP Journals

    [1] Mo Chen, Jianfei Wang, Yang Lu, Xiaoyang Hu, Wei Chen, Zhou Meng. Research progress of ultra-narrow-linewidth Brillouin fiber laser (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230131

    [2] Hao Zheng, Chen Zhao, Fei Zhang, Pengfei Li, Bingzheng Yan, Yulei Wang, Zhenxu Bai, Zhiwei Lv. Study on the longitudinal mode characteristic of idler wave in MgO:PPLN infrared optical parametric oscillator[J]. Infrared and Laser Engineering, 2023, 52(12): 20230378

    [3] Lei Chen, Jiajing Zhu, Pan Li, Heshan Liu, Changjun Ke, Jin Yu, Ziren Luo. Wavelength tuning with temperature in single longitudinal mode DBR fiber laser[J]. Infrared and Laser Engineering, 2023, 52(4): 20220570

    Wei Shi, Shijie Fu, Quan Sheng, Chaodu Shi, Junxiang Zhang, Lu Zhang, Jianquan Yao. Research progress on high-performance single-frequency fiber lasers: 2017-2021 (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210905
    Download Citation