• Laser & Optoelectronics Progress
  • Vol. 49, Issue 12, 120001 (2012)
Yu Jianqiang1、2、*, Yuan Jinghe2, and Li Yingjun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop49.120001 Cite this Article Set citation alerts
    Yu Jianqiang, Yuan Jinghe, Li Yingjun. Principle and Progress of Experimental Setup on Stimulated Emission Depletion Fluorescence Microscope[J]. Laser & Optoelectronics Progress, 2012, 49(12): 120001 Copy Citation Text show less
    References

    [1] E. Abbe. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archivfür Mikroskopische Anatomie, 1873, 9(1): 413~468

    [2] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated-emission-stimulated-emission-depletion fluorescence microscopy[J]. Opt. Lett., 1994, 19(11): 780~782

    [3] V. Westphal, S. W. Hell. Nanoscale resolution in the focal plane of an optical microscope[J]. Phys. Rev. Lett., 2005, 94(14): 143903

    [4] B. Harke, J. Keller, C. K. Ullal et al.. Resolution scaling in STED microscopy[J]. Opt. Express, 2008, 16(6): 4154~4162

    [5] S. W. Hell. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153~1158

    [6] L. Kastrup, H. Blom, C. Eggeling et al.. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes[J]. Phys. Rev. Lett., 2005, 94(17): 178104

    [7] M. Hofmann, C. Eggeling, S. Jakobs et al.. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. P. Natl. Acad. Sci. USA, 2005, 102(49): 17565~17569

    [8] M. Fernandez-Suarez, A. Y. Ting. Fluorescent probes for super-resolution imaging in living cells[J]. Nat. Rev. Mol. Cell. Bio., 2008, 9(12): 929~943

    [9] B. Hein, K. I. Willig, S. W. Hell. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell[J]. P. Natl. Acad. Sci. USA, 2008, 105(38): 14271~14276

    [10] Wang Yan, Zhao Lingling, Chen Tongsheng et al.. Study on cell cycle using fluorescence lifetime imaging microscopic system based on a streak camera[J]. Chinese J. Lasers, 2011, 38(3): 0304002

    [11] Cai Xiamei, Yu Biying, Wu Shulian et al.. Evalution of myocardial ischemia by two-photon excited fluorescence in vivo[J]. Laser & Optoelectronics Progress, 2010, 47(6): 061701

    [12] K. I. Willig, A. C. Stiel, T. Brakemann et al.. Dual-label STED nanoscopy of living cells using photochromism[J]. Nano Lett., 2011, 11(9): 3970~3973

    [13] K. R. Chi. Super-resolution microscopy: breaking the limits[J]. Nature Methods, 2009, 6(1): 15~18

    [14] T. A. Klar, S. W. Hell. Subdiffraction resolution in far-field fluorescence microscopy[J]. Opt. Lett., 1999, 24(14): 954~956

    [15] T. A. Klar, E. Engel, S. W. Hell. Breaking Abbe′s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes[J]. Phys. Rev. E, 2001, 64(6): 066613

    [16] M. Dyba, S. W. Hell. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution[J]. Phys. Rev. Lett., 2002, 88(16): 163901

    [17] V. Westphal, J. Seeger, T. Salditt et al.. Stimulated emission depletion microscopy on lithographic nanostructures[J]. J. Phys. B: At Mol. Opt., 2005, 38(9): S695~S705

    [18] K. I. Willig, S. O. Rizzoli, V. Westphal et al.. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935~939

    [19] G. Donnert, J. Keller, R. Medda et al.. Macromolecular-scale resolution in biological fluorescence microscopy[J]. P. Natl. Acad. Sci. USA, 2006, 103(31): 11440~11445

    [20] S. Bretschneider, C. Eggeling, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Phys. Rev. Lett., 2007, 98(21): 218103

    [21] E. Rittweger, K. Y. Han, S. E. Irvine et al.. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature. Photon., 2009, 3(3): 144~147

    [22] Chen Wenxia, Xiao Fanrong, Liu Li et al.. Breaking through the diffraction limit of far-field optical microscopy by stimulated emission depletion (STED)[J]. Laser & Optoelectronics Progress, 2005, 42(10): 51~56

    [23] E. Rittweger, B. R. Rankin, V. Westphal et al.. Fluorescence depletion mechanisms in super-resolving STED microscopy[J]. Chem. Phys. Lett., 2007, 442(4-6): 483~487

    [24] M. Schrader, F. Meinecke, K. Bahlmann. Monitoring the excited state of a fluorophore in a microscope by stimulated emission[J]. Bioimaging, 1995, 3(4): 147~153

    [25] E. Wolf. Electromagnetic diffraction in optical systems.1. An integral representation of the image field[J]. Proc. R. Soc. Lon. Ser. A, 1959, 253(1274): 349~357

    [26] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems.2. Structure of the image field in an aplanatic system[J]. Proc. R. Soc. Lon. Ser. A, 1959, 253(1274): 358~379

    [27] T. A. Klar, M. Dyba, S. W. Hell. Stimulated emission depletion microscopy with an offset depleting beam[J]. Appl. Phys. Lett., 2001, 78(4): 393~395

    [28] T. A. Klar, S. Jakobs, M. Dyba et al.. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. P. Natl. Acad. Sci. USA, 2000, 97(15): 8206~8210

    [29] V. Westphal, L. Kastrup, S. W. Hell. Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy[J]. Appl. Phys. B, 2003, 77(4): 377~380

    [30] M. Bossi, J. Folling, M. Dyba et al.. Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability[J]. New J. Phys., 2006, 8: 275

    [31] Yu Jianqiang, Yuan Jinghe, Fang Xiaohong et al.. Effect of excitation and depletion process on resolution of stimulated emission depletion microscopy[J]. Acta Optica Sinica, 2010, 30(s1): s100405

    [32] E. Auksorius, B. R. Boruah, C. Dunsby et al.. Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging[J]. Opt. Lett., 2008, 33(2): 113~115

    [33] D. Wildanger, E. Rittweger, L. Kastrup et al.. STED microscopy with a supercontinuum laser source[J]. Opt. Express, 2008, 16(13): 9614~9621

    [34] K. I. Willig, B. Harke, R. Medda et al.. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11): 915~918

    [35] J. Buckers, D. Wildanger, G. Vicidomini et al.. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses[J]. Opt. Express, 2011, 19(4): 3130~3143

    [36] G. Moneron, R. Medda, B. Hein et al.. Fast STED microscopy with continuous wave fiber lasers[J]. Opt. Express, 2010, 18(2): 1302~1309

    [37] P. Bingen, M. Reuss, J. Engelhardt et al.. Parallelized STED fluorescence nanoscopy[J]. Opt. Express, 2011, 19(24): 23716~23726

    [38] V. Westphal, M. A. Lauterbach, A. D. Nicola et al.. Dynamic far-field fluorescence nanoscopy[J]. New. J. Phys., 2007, 9: 435

    [39] V. Westphal, S. O. Rizzoli, M. A. Lauterbach et al.. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246~249

    [40] T. Scheul, C. D. Amico, I. Wang et al.. Two-photon excitation and stimulated emission depletion by a single wavelength[J]. Opt. Express, 2011, 19(19): 18036~18048

    [41] G. Moneron, S. W. Hell. Two-photon excitation STED microscopy[J]. Opt. Express, 2009, 17(17): 14567~14573

    [42] R. J. Marsh, D. A. Armoogum, A. J. Bain. Stimulated emission depletion of two-photon excited states[J]. Chem. Phys. Lett., 2002, 366(3-4): 398~405

    [43] P. Bianchini, A. Diaspro. Fast scanning STED and two-photon fluorescence excitation microscopy with continuous wave beam[J]. J. Microsc-Oxford, 2012, 245(3): 225~228

    [44] P. Bianchini, B. Harke, S. Galiani et al.. Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging[J]. P. Natl. Acad. Sci. USA, 2012, 109(17): 6390~6393

    [45] P. Torok, P. R. T. Munro. The use of Gauss-Laguerre vector beams in STED microscopy[J]. Opt. Express, 2004, 12(15): 3605~3617

    [46] R. K. Singh, P. Senthilkumran, K. Singh. Focusing of linearly and circularly polarized Gaussian background vortex beams by a high numerical aperture system afflicted with third-order astigmatism[J]. Opt. Commun., 2008, 281(24): 5939~5948

    [47] V. Westphal, C. M. Blanca, M. Dyba et al.. Laser-diode-stimulated emission depletion microscopy[J]. Appl. Phys. Lett., 2003, 82(18): 3125~3217

    [48] D. Wildanger, R. Medda, L. Kastrup et al.. A compact STED microscope providing 3D nanoscale resolution[J]. J. Microsc. Oxford, 2009, 236(1): 35~43

    [49] C. K. Ullal, S. Primpke, R. Schmidt et al.. Flexible microdomain specific staining of block copolymers for 3D optical nanoscopy[J]. Macromolecules, 2011, 44(19): 7508~7510

    [50] A. Punge, S. O. Rizzoli, R. Jahn et al.. 3D reconstruction of high-resolution STED microscope images[J]. Microsc. Res. Techniq., 2008, 71(9): 644~650

    [51] M. Leutenegger, C. Ringemann, T. Lasser et al.. Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS)[J]. Opt. Express, 2012, 20(5): 5243~5263

    Yu Jianqiang, Yuan Jinghe, Li Yingjun. Principle and Progress of Experimental Setup on Stimulated Emission Depletion Fluorescence Microscope[J]. Laser & Optoelectronics Progress, 2012, 49(12): 120001
    Download Citation