• Photonics Research
  • Vol. 12, Issue 2, 301 (2024)
Felipe Guzmán1, Jorge Tapia1, Camilo Weinberger1, Nicolás Hernández1, Jorge Bacca2, Benoit Neichel3, and Esteban Vera1、*
Author Affiliations
  • 1School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
  • 2Department of Systems Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
  • 3Laboratoire d’Astrophysique de Marseille, Marseille, France
  • show less
    DOI: 10.1364/PRJ.502245 Cite this Article Set citation alerts
    Felipe Guzmán, Jorge Tapia, Camilo Weinberger, Nicolás Hernández, Jorge Bacca, Benoit Neichel, Esteban Vera. Deep optics preconditioner for modulation-free pyramid wavefront sensing[J]. Photonics Research, 2024, 12(2): 301 Copy Citation Text show less
    References

    [1] B. C. Platt, R. Shack. History and principles of Shack-Hartmann wavefront sensing. J. Refractive Surg., 17, S573-S577(2001).

    [2] P. L. Wizinowich, D. Le Mignant, A. H. Bouchez. The W. M. Keck Observatory laser guide star adaptive optics system: overview. Publ. Astron. Soc. Pac., 118, 297(2006).

    [3] J.-F. Le Gargasson, M. Glanc, P. Léna. Retinal imaging with adaptive optics. C. R. Acad. Sci. IV, 2, 1131-1138(2001).

    [4] R. G. Lane, M. Tallon. Wave-front reconstruction using a Shack–Hartmann sensor. Appl. Opt., 31, 6902-6908(1992).

    [5] O. Fauvarque, B. Neichel, T. Fusco. General formalism for Fourier-based wave front sensing. Optica, 3, 1440-1452(2016).

    [6] R. Ragazzoni. Pupil plane wavefront sensing with an oscillating prism. J. Mod. Opt., 43, 289-293(1996).

    [7] R. K. Tyson, B. W. Frazier. Principles of Adaptive Optics(2022).

    [8] I. Shatokhina, V. Hutterer, R. Ramlau. Review on methods for wavefront reconstruction from pyramid wavefront sensor data. J. Astron. Telesc. Instrum. Syst., 6, 010901(2020).

    [9] R. Clare, B. Engler, S. Weddell. Numerical evaluation of pyramid type sensors for extreme adaptive optics for the European extremely large telescope. Adaptive Optics for Extremely Large Telescopes, 5(2017).

    [10] P. Ciliegi, G. Agapito, M. Aliverti. MAORY: the adaptive optics module for the Extremely Large Telescope (ELT). Proc. SPIE, 11448, 114480Y(2020).

    [11] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [12] Y. Nishizaki, M. Valdivia, R. Horisaki. Deep learning wavefront sensing. Opt. Express, 27, 240-251(2019).

    [13] L. Hu, S. Hu, W. Gong. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Opt. Express, 27, 33504-33517(2019).

    [14] T. B. DuBose, D. F. Gardner, A. T. Watnik. Intensity-enhanced deep network wavefront reconstruction in Shack–Hartmann sensors. Opt. Lett., 45, 1699-1702(2020).

    [15] G. Orban de Xivry, M. Quesnel, P.-O. Vanberg. Focal plane wavefront sensing using machine learning: performance of convolutional neural networks compared to fundamental limits. Mon. Not. R. Astron. Soc., 505, 5702-5713(2021).

    [16] T. E. Andersen, M. Owner-Petersen, A. Enmark. Image-based wavefront sensing for astronomy using neural networks. J. Astron. Telesc. Instrum. Syst., 6, 034002(2020).

    [17] C. Weinberger, F. Guzmán, J. Tapia. Design and training of a deep neural network for estimating the optical gain in pyramid wavefront sensors. Imaging and Applied Optics Congress, JF1B.6(2022).

    [18] J. Bacca, T. Gelvez-Barrera, H. Arguello. Deep coded aperture design: an end-to-end approach for computational imaging tasks. IEEE Trans. Comput. Imaging, 7, 1148-1160(2021).

    [19] D. Mengu, M. S. S. Rahman, Y. Luo. At the intersection of optics and deep learning: statistical inference, computing, and inverse design. Adv. Opt. Photon., 14, 209-290(2022).

    [20] H. Arguello, S. Pinilla, Y. Peng. Shift-variant color-coded diffractive spectral imaging system. Optica, 8, 1424-1434(2021).

    [21] R. Ragazzoni, E. Diolaiti, E. Vernet. A pyramid wavefront sensor with no dynamic modulation. Opt. Commun., 208, 51-60(2002).

    [22] J. LeDue, L. Jolissaint, J.-P. Véran. Calibration and testing with real turbulence of a pyramid sensor employing static modulation. Opt. Express, 17, 7186-7195(2009).

    [23] C. Vérinaud. On the nature of the measurements provided by a pyramid wave-front sensor. Opt. Commun., 233, 27-38(2004).

    [24] V. Chambouleyron, O. Fauvarque, C. Plantet. Modeling noise propagation in Fourier-filtering wavefront sensing, fundamental limits, and quantitative comparison. Astron. Astrophys., 670, A153(2023).

    [25] J. Tapia, F. P. Bustos, C. Weinberger. PULPOS: a multi-purpose adaptive optics test bench in Chile. Proc. SPIE, 12185, 1218574(2022).

    [26] G. I. Taylor. The spectrum of turbulence. Proc. R. S. London A, 164, 476-490(1938).

    [27] H. Wang, H. Wang, W. Zhang. Toward near-perfect diffractive optical elements via nanoscale 3D printing. ACS Nano, 14, 10452-10461(2020).

    [28] V. Akondi, S. Castillo, B. Vohnsen. Digital pyramid wavefront sensor with tunable modulation. Opt. Express, 21, 18261-18272(2013).

    [29] R. Conan, C. Correia. Object-oriented MATLAB adaptive optics toolbox. Proc. SPIE, 9148, 91486C(2014).

    [30] V. I. Tatarski. Wave Propagation in a Turbulent Medium(2016).

    [31] E. Muslimov, N. Levraud, V. Chambouleyron. Current status of PAPYRUS: the pyramid based adaptive optics system at LAM/OHP. Proc. SPIE, 11876, 118760H(2021).

    [32] N. N. Hubin, M. L. Louarn, M. S. Sarazin. New challenges for adaptive optics: the OWL 100-m telescope. Proc. SPIE, 4007, 1100-1107(2000).

    [33] I. Loshchilov, F. Hutter. Decoupled weight decay regularization(2019).

    [34] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2017).

    [35] C. M. Bishop. Neural Networks for Pattern Recognition(1995).

    [36] Q. Zhang, Q. Hu, C. Berlage. Adaptive optics for optical microscopy. Biomed. Opt. Express, 14, 1732-1756(2023).

    [37] E. Brunner, J. Shatokhina, M. F. Shirazi. Retinal adaptive optics imaging with a pyramid wavefront sensor. Biomed. Opt. Express, 12, 5969-5990(2021).

    [38] https://github.com/FOGuzman/End2EndPyrWFS. https://github.com/FOGuzman/End2EndPyrWFS

    Felipe Guzmán, Jorge Tapia, Camilo Weinberger, Nicolás Hernández, Jorge Bacca, Benoit Neichel, Esteban Vera. Deep optics preconditioner for modulation-free pyramid wavefront sensing[J]. Photonics Research, 2024, 12(2): 301
    Download Citation