• Infrared and Laser Engineering
  • Vol. 49, Issue 1, 103003 (2020)
Yang Qi1、2, Shen Jun1、2, Wei Xingzhan1、2, and Shi Haofei1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla202049.0103003 Cite this Article
    Yang Qi, Shen Jun, Wei Xingzhan, Shi Haofei. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 103003 Copy Citation Text show less
    References

    [1] Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in single-layer graphene[J]. Nano Letters, 2009, 9(5): 1742-1746.

         Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in single-layer graphene[J]. Nano Letters, 2009, 9(5): 1742-1746.

    [2] Xia F N, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3): 1039-1044.

         Xia F N, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3): 1039-1044.

    [3] Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843.

         Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843.

    [4] Ryzhii V, Ryzhii M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection[J]. Physical Review B, 2009, 79(24): 245311.

         Ryzhii V, Ryzhii M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection[J]. Physical Review B, 2009, 79(24): 245311.

    [5] Bao W, Jing L, Velasco J, Jr, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nature Physics, 2011, 7(12): 948-952.

         Bao W, Jing L, Velasco J, Jr, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nature Physics, 2011, 7(12): 948-952.

    [6] Sonde S, Giannazzo F, Raineri V, et al. Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy[J]. Physical Review B, 2009, 80(24): 241406.

         Sonde S, Giannazzo F, Raineri V, et al. Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy[J]. Physical Review B, 2009, 80(24): 241406.

    [7] Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83.

         Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83.

    [8] Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene–CMOS integration[J]. Nature Photonics, 2017, 11(6): 366-371.

         Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene–CMOS integration[J]. Nature Photonics, 2017, 11(6): 366-371.

    [9] Xia F, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3): 1039-1044.

         Xia F, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3): 1039-1044.

    [10] Drain C M, Christensen B, Mauzerall D. Photogating of ionic currents across a lipid bilayer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 6959-6962.

         Drain C M, Christensen B, Mauzerall D. Photogating of ionic currents across a lipid bilayer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 6959-6962.

    [11] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368.

         Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368.

    [12] Fang H, Hu W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12): 1700323.

         Fang H, Hu W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12): 1700323.

    [13] Hu Weida, Li Qing, Chen Xiaoshuang, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese)

         Hu Weida, Li Qing, Chen Xiaoshuang, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese)

    [14] Guo X, Wang W, Nan H, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10): 1066-1070.

         Guo X, Wang W, Nan H, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10): 1066-1070.

    [15] Lemme M C, Koppens F H L, Falk A L, et al. Gate-activated photoresponse in a graphene p-n junction[J]. Nano Letters, 2011, 11(10): 4134-4137.

         Lemme M C, Koppens F H L, Falk A L, et al. Gate-activated photoresponse in a graphene p-n junction[J]. Nano Letters, 2011, 11(10): 4134-4137.

    [16] Xu X, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2): 562-566.

         Xu X, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2): 562-566.

    [17] Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene[J]. Science, 2011, 334(6056): 648-652.

         Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene[J]. Science, 2011, 334(6056): 648-652.

    [18] Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Letters, 2011, 11(11): 4688-4692.

         Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Letters, 2011, 11(11): 4688-4692.

    [19] Sun D, Aivazian G, Jones A M, et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 2012, 7(2): 114-118.

         Sun D, Aivazian G, Jones A M, et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 2012, 7(2): 114-118.

    [20] Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors: Outlook and status[J]. Applied Physics Reviews, 2019, 6(2): 021316.

         Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors: Outlook and status[J]. Applied Physics Reviews, 2019, 6(2): 021316.

    [21] Piscanec S, Lazzeri M, Mauri F, et al. Kohn anomalies and electron-phonon interactions in graphite[J]. Physical Review Letters, 2004, 93(18): 185503.

         Piscanec S, Lazzeri M, Mauri F, et al. Kohn anomalies and electron-phonon interactions in graphite[J]. Physical Review Letters, 2004, 93(18): 185503.

    [22] Lazzeri M, Piscanec S, Mauri F, et al. Electron transport and hot phonons in carbon nanotubes[J]. Physical Review Letters, 2005, 95(23): 236802.

         Lazzeri M, Piscanec S, Mauri F, et al. Electron transport and hot phonons in carbon nanotubes[J]. Physical Review Letters, 2005, 95(23): 236802.

    [23] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2): 1086-1101.

         Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2): 1086-1101.

    [24] Bistritzer R, MacDonald A H. Electronic cooling in graphene[J]. Physical Review Letters, 2009, 102(20): 206410.

         Bistritzer R, MacDonald A H. Electronic cooling in graphene[J]. Physical Review Letters, 2009, 102(20): 206410.

    [25] Tse W K, Das Sarma S. Energy relaxation of hot dirac fermions in graphene[J]. Physical Review B, 2009, 79 (23): 235406.

         Tse W K, Das Sarma S. Energy relaxation of hot dirac fermions in graphene[J]. Physical Review B, 2009, 79 (23): 235406.

    [26] Song J C W, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene[J]. Physical Review Letters, 2012, 109(10): 106602.

         Song J C W, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene[J]. Physical Review Letters, 2012, 109(10): 106602.

    [27] Graham M W, Shi S F, Ralph D C, et al. Photocurrent measurements of supercollision cooling in graphene[J]. Nature Physics, 2013, 9(2): 103-108.

         Graham M W, Shi S F, Ralph D C, et al. Photocurrent measurements of supercollision cooling in graphene[J]. Nature Physics, 2013, 9(2): 103-108.

    [28] Betz A C, Jhang S H, Pallecchi E, et al. Supercollision cooling in undoped graphene[J]. Nature Physics, 2013, 9(2): 109-112.

         Betz A C, Jhang S H, Pallecchi E, et al. Supercollision cooling in undoped graphene[J]. Nature Physics, 2013, 9(2): 109-112.

    [29] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

         Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

    [30] Koppens F H, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

         Koppens F H, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

    [31] Xia F, Yan H, Avouris P. The interaction of light and graphene: Basics, devices, and applications[J]. Proceedings of the IEEE, 2013, 101(7): 1717-1731.

         Xia F, Yan H, Avouris P. The interaction of light and graphene: Basics, devices, and applications[J]. Proceedings of the IEEE, 2013, 101(7): 1717-1731.

    [32] Tissot J L, Trouilleau C, Fieque B, et al. Uncooled microbolometer detector: Recent developments at ulis[J]. Opto-Electronics Review, 2006, 14(1): 25-32.

         Tissot J L, Trouilleau C, Fieque B, et al. Uncooled microbolometer detector: Recent developments at ulis[J]. Opto-Electronics Review, 2006, 14(1): 25-32.

    [33] Gong Yuguang, Li Wei, Cai Haihong, et al. Simulation of microbolometers based on a-Si:H thin films with thermal and mechanical performance[J]. Chinese Journal of Sensors and Actuaors, 2009, 22(8): 1122-1126. (in Chinese)

         Gong Yuguang, Li Wei, Cai Haihong, et al. Simulation of microbolometers based on a-Si:H thin films with thermal and mechanical performance[J]. Chinese Journal of Sensors and Actuaors, 2009, 22(8): 1122-1126. (in Chinese)

    [34] Soref R A. Silicon-based optoelectronics[J]. Proceedings of the IEEE, 1993, 81(12): 1687-1706.

         Soref R A. Silicon-based optoelectronics[J]. Proceedings of the IEEE, 1993, 81(12): 1687-1706.

    [35] Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1): 1-24.

         Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1): 1-24.

    [36] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors[J]. Nature Photonics, 2013, 7(11): 888-891.

         Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors[J]. Nature Photonics, 2013, 7(11): 888-891.

    [37] Voisin C, Placais B. Hot carriers in graphene preface[J]. Journal of Physics-Condensed Matter, 2015, 27(16) : 160301.

         Voisin C, Placais B. Hot carriers in graphene preface[J]. Journal of Physics-Condensed Matter, 2015, 27(16) : 160301.

    [38] Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4: 1987.

         Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4: 1987.

    [39] Breusing M, Kuehn S, Winzer T, et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer[J]. Physical Review B, 2011, 83(15): 153410.

         Breusing M, Kuehn S, Winzer T, et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer[J]. Physical Review B, 2011, 83(15): 153410.

    [40] Rodriguez-Nieva J F, Dresselhaus M S, Levitov L S. Thermionic emission and negative dI/dV in photoactive graphene heterostructures[J]. Nano Letters, 2015, 15 (3): 1451-1456.

         Rodriguez-Nieva J F, Dresselhaus M S, Levitov L S. Thermionic emission and negative dI/dV in photoactive graphene heterostructures[J]. Nano Letters, 2015, 15 (3): 1451-1456.

    [41] Liang S J, Ang L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1): 014002.

         Liang S J, Ang L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1): 014002.

    [42] Massicotte M, Schmidt P, Vialla F, et al. Photo-thermionic effect in vertical graphene heterostructures[J]. Nature Communications, 2016, 7: 12174.

         Massicotte M, Schmidt P, Vialla F, et al. Photo-thermionic effect in vertical graphene heterostructures[J]. Nature Communications, 2016, 7: 12174.

    [43] Kim R, Perebeinos V, Avouris P. Relaxation of optically excited carriers in graphene[J]. Physical Review B, 2011, 84(7): 075449.

         Kim R, Perebeinos V, Avouris P. Relaxation of optically excited carriers in graphene[J]. Physical Review B, 2011, 84(7): 075449.

    [44] Freitag M, Low T, Xia F, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1): 53-59.

         Freitag M, Low T, Xia F, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1): 53-59.

    [45] Freitag M, Low T, Avouris P. Increased responsivity of suspended graphene photodetectors[J]. Nano Letters, 2013, 13(4): 1644-1648.

         Freitag M, Low T, Avouris P. Increased responsivity of suspended graphene photodetectors[J]. Nano Letters, 2013, 13(4): 1644-1648.

    [46] Yan J, Kim M H, Elle J A, et al. Dual-gated bilayer graphene hot-electron bolometer[J]. Nature Nanotechnology, 2012, 7(7): 472-478.

         Yan J, Kim M H, Elle J A, et al. Dual-gated bilayer graphene hot-electron bolometer[J]. Nature Nanotechnology, 2012, 7(7): 472-478.

    [47] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 2012, 12(6): 2773-2777.

         Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 2012, 12(6): 2773-2777.

    [48] Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7 (11): 892-896.

         Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7 (11): 892-896.

    [49] Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887.

         Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887.

    [50] Lee I H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy[J]. Nature Nanotechnology, 2019, 14(4): 313-319.

         Lee I H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy[J]. Nature Nanotechnology, 2019, 14(4): 313-319.

    [51] Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10): 9854-9862.

         Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10): 9854-9862.

    [52] Sun T, Wang Y, Yu W, et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3-xP colloidal nanocrystals[J]. Small, 2017, 13(42): UNSP 1701881.

         Sun T, Wang Y, Yu W, et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3-xP colloidal nanocrystals[J]. Small, 2017, 13(42): UNSP 1701881.

    [53] Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Applied Physics Letters, 2014, 105(3): 031905.

         Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Applied Physics Letters, 2014, 105(3): 031905.

    [54] Yao Y, Shankar R, Rauter P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection[J]. Nano Letters, 2014, 14(7): 3749-3754.

         Yao Y, Shankar R, Rauter P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection[J]. Nano Letters, 2014, 14(7): 3749-3754.

    [55] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7): 3808-3813.

         Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7): 3808-3813.

    [56] Azar N S, Shrestha V R, Crozier K B. Bull's eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors[J]. Applied Physics Letters, 2019, 114 (9): 091108.

         Azar N S, Shrestha V R, Crozier K B. Bull's eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors[J]. Applied Physics Letters, 2019, 114 (9): 091108.

    [57] Zhang Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4: 1811.

         Zhang Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4: 1811.

    [58] Liu Y, Gong T, Zheng Y, et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry[J]. Nanoscale, 2018, 10(42): 20013-20019.

         Liu Y, Gong T, Zheng Y, et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry[J]. Nanoscale, 2018, 10(42): 20013-20019.

    [59] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7: 11954.

         Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7: 11954.

    [60] Chen Z, Li X, Wang J, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity[J]. ACS Nano, 2017, 11(1): 430-437.

         Chen Z, Li X, Wang J, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity[J]. ACS Nano, 2017, 11(1): 430-437.

    [61] Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance[J]. Nature Communications, 2017, 8: 14311.

         Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance[J]. Nature Communications, 2017, 8: 14311.

    [62] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

         Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

    [63] Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 2011, 11(7): 2804-2808.

         Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 2011, 11(7): 2804-2808.

    [64] Schuler S, Schall D, Neumaier D, et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector[J]. Nano Letters, 2016, 16(11): 7107-7112.

         Schuler S, Schall D, Neumaier D, et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector[J]. Nano Letters, 2016, 16(11): 7107-7112.

    [65] Schall D, Porschatis C, Otto M, et al. Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line[J]. Journal of Physics D-Applied Physics, 2017, 50(12): 124004.

         Schall D, Porschatis C, Otto M, et al. Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line[J]. Journal of Physics D-Applied Physics, 2017, 50(12): 124004.

    [66] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7): 532-535.

         Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7): 532-535.

    [67] Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4): 273-278.

         Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4): 273-278.

    [68] Herring P K, Hsu A L, Gabor N M, et al. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple[J]. Nano Letters, 2014, 14(2): 901-907.

         Herring P K, Hsu A L, Gabor N M, et al. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple[J]. Nano Letters, 2014, 14(2): 901-907.

    [69] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368.

         Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368.

    [70] Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 2013, 8(11): 826-830.

         Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 2013, 8(11): 826-830.

    [71] Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35): 16065-16072.

         Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35): 16065-16072.

    [72] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10): 865-871.

         Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10): 865-871.

    [73] Qin H, Sun J, Liang S, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116: 760-765.

         Qin H, Sun J, Liang S, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116: 760-765.

    [74] An X, Liu F, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3): 909-916.

         An X, Liu F, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3): 909-916.

    [75] Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6): 061111.

         Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6): 061111.

    [76] Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector[J]. Applied Physics Letters, 2013, 103(2): 021113.

         Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector[J]. Applied Physics Letters, 2013, 103(2): 021113.

    [77] Vabbina P, Choudhary N, Chowdhury A A, et al. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15206-15213.

         Vabbina P, Choudhary N, Chowdhury A A, et al. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15206-15213.

    [78] Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259.

         Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259.

    [79] Zomer P J, Dash S P, Tombros N, et al. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride[J]. Applied Physics Letters, 2011, 99(23): 232104.

         Zomer P J, Dash S P, Tombros N, et al. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride[J]. Applied Physics Letters, 2011, 99(23): 232104.

    [80] Gammelgaard L, Caridad J M, Cagliani A, et al. Graphene transport properties upon exposure to PMMA processing and heat treatments[J]. 2D Materials, 2014, 1(3): 035005.

         Gammelgaard L, Caridad J M, Cagliani A, et al. Graphene transport properties upon exposure to PMMA processing and heat treatments[J]. 2D Materials, 2014, 1(3): 035005.

    Yang Qi, Shen Jun, Wei Xingzhan, Shi Haofei. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 103003
    Download Citation