[1] S W Hell, J Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19, 780-782(1994).
[2] M Gu, H Kang, X P Li. Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam. Sci Rep, 4, 3627(2014).
[4] M Y Luo, D Q Sun, Y J Yang et al. Three-dimensional isotropic STED microscopy generated by 4π focusing of a radially polarized vortex Laguerre–Gaussian beam. Opt Commun, 463, 125434(2020).
[5] M J Rust, M Bates, X W Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3, 793-796(2006).
[6] D Kamiyama, B Huang. Development in the STORM. Dev Cell, 23, 1103-1110(2012).
[7] E Betzig, G H Patterson, R Sougrat et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).
[10] R Heintzmann, C G Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE, 3568, 185-196(1999).
[11] C F Kuang, S Li, W Liu et al. Breaking the diffraction barrier using fluorescence emission difference microscopy. Sci Rep, 3, 1441(2013).
[12] Z J Zhang, X Xu, J X Wang et al. Review of the development of light sheet fluorescence microscopy. Opto-Electron Eng, 50, 220045(2023).
[13] Y T Xiao, L W Chen, M B Pu et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron Sci, 2, 230037(2003).
[14] L W Chen, Y Zhou, M X Wu et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron Adv, 1, 170001(2018).
[15] X S Chen, W J Du, Z L Lou et al. Label-free far-field subdiffraction imaging based on hyperbolic metamaterial. Opto-Electron Eng, 49, 220056(2022).
[16] A N Kireev, T Graf. Vector coupled-mode theory of dielectric waveguides. IEEE J Quantum Electron, 39, 866-873(2003).
[17] G Volpe, D Petrov. Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams. Opt Commun, 237, 89-95(2004).
[18] S Quabis, R Dorn, G Leuchs. Generation of a radially polarized doughnut mode of high quality. Appl Phys B, 81, 597-600(2005).
[19] A N Kireev, T Graf. Symmetric vector coupled-mode theory of dielectric waveguides. Opt Commun, 244, 25-35(2005).
[20] J B Xiao, X H Sun. Full-vectorial mode solver for anisotropic optical waveguides using multidomain spectral collocation method. Opt Commun, 283, 2835-2840(2010).
[21] H Luo, G R Wang, L B Yuan. A special three-layer step-index fiber for building compact STED systems. Sci Rep, 9, 8455(2019).
[22] J H Zou, H J Wang, W W Li et al. Visible-wavelength all-fiber vortex laser. IEEE Photonics Technol Lett, 31, 1487-1490(2019).
[23] W D Zhang, L G Huang, K Y Wei et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion. Opt Lett, 41, 5082-5085(2016).
[24] L Yan, P Kristensen, S Ramachandran. Vortex fibers for STED microscopy. APL Photonics, 4, 022903(2019).