• Journal of Semiconductors
  • Vol. 42, Issue 11, 112202 (2021)
Zhen Li and Guanjun Yang
Author Affiliations
  • School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.1088/1674-4926/42/11/112202 Cite this Article
    Zhen Li, Guanjun Yang. A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%[J]. Journal of Semiconductors, 2021, 42(11): 112202 Copy Citation Text show less
    References

    [1] C T Zuo, H J Bolink, H W Han et al. Advances in perovskite solar cells. Adv Sci, 3, 1500324(2016).

    [2] A K Jena, A Kulkarni, T Miyasaka. Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev, 119, 3036(2019).

    [3] J Y Kim, J W Lee, H S Jung et al. High-efficiency perovskite solar cells. Chem Rev, 120, 7867(2020).

    [4] P Wang, Y H Wu, B Cai et al. Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater, 29, 1807661(2019).

    [5] F Huang, M J Li, P Siffalovic et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ Sci, 12, 518(2019).

    [6] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [7] J Jeong, M Kim, J Seo et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381(2021).

    [8] S G Motti, D Meggiolaro, S Martani et al. Defect activity in lead halide perovskites. Adv Mater, 31, 1901183(2019).

    [9] A F Castro-Méndez, J Hidalgo, J P Correa-Baena. The role of grain boundaries in perovskite solar cells. Adv Energy Mater, 9, 1901489(2019).

    [10] Y Q Yang, J H Wu, X B Wang et al. Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv Mater, 32, 1904347(2020).

    [11] W C Kong, S W Wang, F Li et al. Ultrathin perovskite monocrystals boost the solar cell performance. Adv Energy Mater, 10, 2000453(2020).

    [12] C T Zuo, L M Ding. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale, 6, 9935(2014).

    [13] S R Wang, A L Wang, X Y Deng et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J Mater Chem A, 8, 12201(2020).

    [14] S B Xiong, T Y Hao, Y Y Sun et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J Energy Chem, 55, 265(2021).

    [15] F Zhang, K Zhu. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 10, 1902579(2020).

    [16] L S Xie, Z Y Cao, J W Wang et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 74, 104846(2020).

    [17] J Z Chen, N G Park. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett, 5, 2742(2020).

    [18] S H Chin, J W Choi, H C Woo et al. Realizing a highly luminescent perovskite thin film by controlling the grain size and crystallinity through solvent vapour annealing. Nanoscale, 11, 5861(2019).

    [19] B B Liu, S Wang, Z R Ma et al. High-performance perovskite solar cells with large grain-size obtained by the synergy of urea and dimethyl sulfoxide. Appl Surf Sci, 467/468, 708(2019).

    [20] S Kavadiya, J Strzalka, D M Niedzwiedzki et al. Crystal reorientation in methylammonium lead iodide perovskite thin film with thermal annealing. J Mater Chem A, 7, 12790(2019).

    [21] C T Zuo, L M Ding. Drop-casting to make efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 60, 1(2021).

    [22] X D Ren, Z Yang, D Yang et al. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale, 8, 3816(2016).

    [23] C C Boyd, R Cheacharoen, T Leijtens et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 119, 3418(2019).

    [24] J Bisquert, E J Juarez-Perez. The causes of degradation of perovskite solar cells. J Phys Chem Lett, 10, 5889(2019).

    [25] S P Dunfield, L Bliss, F Zhang et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv Energy Mater, 10, 1904054(2020).

    [26] B Shi, X Yao, F H Hou et al. Unraveling the passivation process of PbI2 to enhance the efficiency of planar perovskite solar cells. J Phys Chem C, 122, 21269(2018).

    [27] Y C Chen, Q Meng, Y Y Xiao et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 11, 44101(2019).

    [28] X J Huang, G P Dong, L M Ding. The recovery of perovskites. Sci Bull, 65, 1600(2020).

    [29] Z M Zhou, Z W Wang, Y Y Zhou et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed, 54, 9705(2015).

    [30] C W Li, S P Pang, H X Xu et al. Methylamine gas based synthesis and healing process toward upscaling of perovskite solar cells: progress and perspective. Sol RRL, 1, 1700076(2017).

    [31]

    [32] B Ding, L L Gao, L S Liang et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl Mater Interfaces, 8, 20067(2016).

    [33] B Ding, S Y Huang, Q Q Chu et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J Mater Chem A, 6, 10233(2018).

    Zhen Li, Guanjun Yang. A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%[J]. Journal of Semiconductors, 2021, 42(11): 112202
    Download Citation