• High Power Laser and Particle Beams
  • Vol. 34, Issue 9, 095005 (2022)
Jinbo Jiang1、2, Yu Cao2, Zheng Luo2, Wanchen Cai2, Jiadong Wang2, and Tingqiang Cheng2
Author Affiliations
  • 1Hubei Provincial Engineering Research Center for Power Transmission Line (China Three Gorges University), Yichang 443002, China
  • 2College of Engineering and New Energy, China Three Gorges University, Yichang 443002, China
  • show less
    DOI: 10.11884/HPLPB202234.220092 Cite this Article
    Jinbo Jiang, Yu Cao, Zheng Luo, Wanchen Cai, Jiadong Wang, Tingqiang Cheng. Simulation research on pulse steepening technology based on ferrite transmission line[J]. High Power Laser and Particle Beams, 2022, 34(9): 095005 Copy Citation Text show less
    References

    [1] French D M, Hoff B W. Spatially dispersive ferrite nonlinear transmission line with axial bias[J]. IEEE Transactions on Plasma Science, 42, 3387-3390(2014).

    [2] Romanchenko I V, Rostov V V, Gunin A V, et al. High power microwave beam steering based on gyromagnetic nonlinear transmission lines[J]. Journal of Applied Physics, 117, 214907(2015).

    [3] Reale D V, Parson J M, Neuber A A, et al. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources[J]. Review of Scientific Instruments, 87, 034706(2016).

    [4] Ulmaskulov M R, Mesyats G A, Sadykova A G, et al. Energy compression of nanosecond high-voltage pulses based on two-stage hybrid scheme[J]. Review of Scientific Instruments, 88, 045106(2017).

    [5] Katayev I G. Electromagic shock waves[M]. London: Iliffe Books Ltd. , 1923.

    [6] PouladianKari R, Benson T M, Shapl A J, et al. The electrical simulation of pulse sharpening by dynamic lines[C]Proceedings of the 7th Pulsed Power Conference. IEEE, 1989.

    [7] Dolan J E. Simulation of shock waves in ferrite-loaded coaxial transmission lines with axial bias[J]. Journal of Physics D: Applied Physics, 32, 1826-1831(1999).

    [8] Yu Jianguo. Research of pulse sharpening based on ferrite line[D]. Xi''an: Xidian University, 2010: 913

    [9] Qiao Zhongxing, Liu Kai, Dong Yin. Investigation of ferrite-filled coaxial transmission lines for pulse sharpening[J]. Transactions of China Electrotechnical Society, 30, 21-25(2015).

    [10] Zhang Xingjia, Lu Yanlei, Fan Yajun, . Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 29, 115002(2017).

    [11] Tie Weihao, Meng Cui, Zhao Chengguang, et al. Optimized analysis of sharpening characteristics of a compact RF pulse source based on a gyro-magnetic nonlinear transmission line for ultrawideband electromagnetic pulse application[J]. Plasma Science and Technology, 21, 095503(2019).

    [12] Tie Weihao, Zhao Chengguang, Meng Cui, . Numerical analysis on modulated RF pulse characteristics of gyro-magnetic nonlinear transmission line[J]. High Voltage Engineering, 45, 301-309(2019).

    [13] Greco A F G, Rossi J O, Yamasaki F S, et al. 1DFDTD simulation of microwave generation using ferrite electromagic shock lines[C]Proceedings of 2020 IEEE Electrical Insulation Conference (EIC). IEEE, 2020.

    [14] Fang Xu, Pan Yafeng, Ding Zhenjie, . Pulse sharpening effect of nonlinear ferrite-loaded transmisstion line[J]. High Power Laser and Particle Beams, 26, 115006(2014).

    [15] Hu Yuechuan. The magization dynamics in magic nanotubes[D]. Tianjin: Hebei University of Technology, 2016: 39

    [16] Wan Defu, Ma Xinglong. Magic physics[M]. Chengdu: University of Electronic Science Technology of China Press, 1994: 437441

    [17] Gilbert T L. A phenomenological theory of damping in ferromagnetic materials[J]. IEEE Transactions on Magnetics, 40, 3443-3449(2004).

    Jinbo Jiang, Yu Cao, Zheng Luo, Wanchen Cai, Jiadong Wang, Tingqiang Cheng. Simulation research on pulse steepening technology based on ferrite transmission line[J]. High Power Laser and Particle Beams, 2022, 34(9): 095005
    Download Citation