• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 2, 238 (2023)
Kang WANG1、2, Yi LIU1, and Liwei SONG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 1007-5461(2023)02-00238-20 Cite this Article
    WANG Kang, LIU Yi, SONG Liwei. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238 Copy Citation Text show less
    References

    [1] Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature [J]. Physical Review Letters, 1959, 3(1): 34-36.

    [2] Lappalainen J, Heinilehto S, Jantunen H, et al. Electrical and optical properties of metal-insulator-transition VO2 thin films [J]. Journal of Electroceramics, 2009, 22: 73-77.

    [3] Cao X, Chang T, Shao Z, et al. Challenges and opportunities toward real application of VO2-based smart glazing [J]. Matter, 2020, 2(4): 862-881.

    [4] Lysenko S, Rua A J, Vikhnin V, et al. Light-induced ultrafast phase transitions in VO2 thin film [J]. Applied Surface Science, 2006, 252(15): 5512-5515.

    [5] Wu B, Zimmers A, Aubin H, et al. Electric-field-driven phase transition in vanadium dioxide [J]. Physical Review B, 2011, 84(24): 241410.

    [6] Leroy J, Crunteanu A, Bessaudou A, et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes [J]. Applied Physics Letters, 2012, 100: 213507.

    [7] Boriskov P, Velichko A, Pergament A, et al. The effect of electric field on metal-insulator phase transition in vanadium dioxide [J]. Technical Physics Letters, 2002, 28: 406-408.

    [8] Liu M, Hwang H Y, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial [J]. Nature, 2012, 487(7407): 345-348.

    [9] Chen X, Wang F, Xu J. Preparation of VO2(B) nanoflake with glycerol as reductant agent and its catalytic application in the aerobic oxidation of benzene to phenol [J]. Topics in Catalysis, 2011, 54: 1016-1023.

    [10] Muraoka Y, Yamauchi T, Ueda Y, et al. Efficient photocarrier injection in a transition metal oxide heterostructure [J]. Journal of Physics: Condensed Matter, 2002, 14(49): L757-L763.

    [11] Ruzmetov D, Senanayake S, Narayanamurti V, et al. Correlation between metal-insulator transition characteristics and electronic structure changes in vanadium oxide thin films [J]. Physical Review B, 2008, 77: 195442.

    [12] Ruzmetov D, Zawilski K, Narayanamurti V, et al. Structure-functional property relationships in RF-sputtered vanadium dioxide thin films [J]. Journal of Applied Physics, 2007, 102(11): 113715-113717.

    [13] Sahana M B, Subbanna G A, Shivashankar S A. Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition [J]. Journal of Applied Physics, 2002, 92(11): 6495-6504.

    [14] Vernardou D, Bei A, Louloudakis D, et al. Oxygen source-oriented control of APCVD VO2 for capacitive applications [J]. Journal of Electrochemical Science and Engineering, 2016, 6(2): 165-173.

    [15] Mani R, Ramanathan S. Observation of a uniform temperature dependence in the electrical resistance across the structural phase transition in thin film vanadium oxide(VO2) [J]. Applied Physics Letters, 2007, 91(6): 062104.

    [16] Chae B, Kim H T, Yun S. Characteristics of W- and Ti-doped VO2 thin films prepared by sol-gel method [J]. Electrochemical and Solid-State Letters, 2008, 11(6): D53-56.

    [17] Fallah Vostakola M, Mirkazemi S M, Yekta B. Structural, morphological and optical properties of W-doped VO2 thin films prepared by sol-gel spin coating method [J]. International Journal of Applied Ceramic Technology, 2019, 16: 943-950.

    [18] Muraoka-Y, Hiroi Z. Metal-insulator transition of VO2 thin films grown on TiO2(001) and(110) substrates [J]. Applied Physics Letters, 2002, 80(4) : 583-585.

    [19] Gupta A, Aggarwal R, Gupta P, et al. Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si(001) [J]. Applied Physics Letters, 2009, 95(11): 111915.

    [20] Novodvorsky O A, Parshina L S, Khramova O D, et al. Influence of the conditions of pulsed laser deposition on the structural, electrical, and optical properties of VO2 thin films [J]. Semiconductors, 2015, 49(5): 563-569.

    [21] Lysenko S, Rúa A, Vikhnin V, et al. Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation [J]. Physical Review B, 2007, 76(3): 035104.

    [22] Jepsen P U, Fischer B M, Thoman A, et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy [J]. Physical Review B, 2006, 74(20): 205103.

    [23] Kübler C, Ehrke H, Huber R, et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2 [J]. Physical Review Letters, 2007, 99(11): 116401.

    [24] Nakajima M, Takubo N, Hiroi Z, et al. Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy [J]. Applied Physics Letters, 2008, 92(1): 011907.

    [25] Wall S, Wegkamp D, Foglia L, et al. Ultrafast changes in lattice symmetry probed by coherent phonons [J]. Nature communications, 2012, 3(1): 721.

    [26] Hada M, Okimura K, Matsuo J. Photo-induced lattice softening of excited-state VO2 [J]. Applied Physics Letters, 2011, 99(5): 051903.

    [27] Cavalleri A, Tóth C, Siders C W, et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition [J]. Physical Review Letters, 2001, 87(23): 237401.

    [28] Gray A X, Hoffmann M C, Jeong J, et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide [J]. Physical Review B, 2018, 98(4): 045104.

    [29] Sun D D, Chen Z, Wen Q Y, et al. VO2 low temperature deposition and terahertz transmission modulation [J]. Acta Physica Sinica, 2013, 62(1): 401-406.

    [30] Liu H W, Wong L M, Wang S J, et al. Ultrafast insulator-metal phase transition in vanadium dioxide studied using optical pump-terahertz probe spectroscopy [J]. Journal of Physics Condensed Matter: An Institute of Physics Journal, 2012, 24: 415604.

    [31] Lee K W, Kweon J J, Lee C, et al. Infrared-wave number-dependent metal-insulator transition in vanadium dioxide nanoparticles [J]. Applied Physics Letters, 2010, 96: 243111-243113.

    [32] Baum P, Yang D S, Zewail A H. 4D visualization of transitional structures in phase transformations by electron diffraction [J]. Science, 2007, 318(5851): 788-792.

    [33] Cocker T L, Titova L V, Fourmaux S, et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide [J]. Physical Review B, 2012, 85(15): 155120.

    [34] Xue X, Jiang M, Li G, et al. Photoinduced insulator-metal phase transition and the metallic phase propagation in VO2 films investigated by time-resolved terahertz spectroscopy [J]. Journal of Applied Physics, 2013, 114: 193506.

    [35] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105.

    [36] Withayachumnankul W, Abbott D. Metamaterials in the terahertz regime [J]. IEEE Photonics Journal, 2009, 1(2): 99-118.

    [37] Luo M H, Xu M J, Hunang Q W, et al. Research progress of metal-insulator phase transition mechanism in VO2 [J]. Acta Physica Sinica, 2016, 65(4): 5-12.

    [38] Wentzcovitch R M, Schulz W W, Allen P B. VO2: Peierls or Mott-Hubbard? A view from band theory [J]. Physical Review Letters, 1994, 72(21): 3389-3392.

    [39] Rice T, Pouget J P. Comment on “VO2: peierls or mott-hubbard? a view from band theory" [J]. Physical Review Letters, 1994, 73: 3042.

    [40] Goodenough J B. The two components of the crystallographic transition in VO2 [J]. Journal of Solid State Chemistry, 1971, 3(4): 490-500.

    [41] Nakajima M, Takubo N, Hiroi Z, et al. Study of photo-induced phenomena in VO2 by terahertz pump-probe spectroscopy [J]. Journal of Luminescence, 2009, 129(12): 1802-1805.

    [42] Cavalleri A, Rini M, Chong H H W, et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption [J]. Physical Review Letters, 2005, 95(6): 067405.

    [43] Zylbersztejn A, Mott N F. Metal-insulator transition in vanadium dioxide [J]. Physical Review B, 1975, 11(11): 4383-4395.

    [44] Paquet D, Leroux-Hugon P. Electron correlations and electron-lattice interactions in the metal-insulator, ferroelastic transition in VO2: A thermodynamical study [J]. Physical Review B, 1980, 22(11): 5284-5301.

    [45] Kim H T, Lee Y, Kim B J, et al. Monoclinic and correlated metal phase in VO2 as evidence of the mott transition: Coherent phonon analysis [J]. Physical Review Letters, 2007, 97: 266401.

    [46] Koethe T C, Hu Z, Haverkort M W, et al. Transfer of spectral weight and symmetry across the metal-insulator transition in VO2 [J]. Physical Review Letters, 2006, 97(11): 116402.

    [47] Biermann S, Poteryaev A, Lichtenstein A I, et al. Dynamical singlets and correlation-assisted peierls transition in VO2 [J]. Physical Review Letters, 2005, 94(2): 026404.

    [48] Roach W R, Balberg I. Optical induction and detection of fast phase transition in VO2 [J]. Solid State Communications, 1971, 9(9): 551-555.

    [49] Karakurt I, Boneberg J, Leiderer P, et al. Transmission increase upon switching of VO2 thin films on microstructured surfaces [J]. Applied Physics Letters, 2007, 91: 091907.

    [50] Becker M, Buckman A B, Walser R M, et al. Femtosecond laser excitation of the semiconductor-metal phase transition in VO2 [J]. Applied Physics Letters, 1994, 65(12): 1507-1509.

    [51] Cavalleri A, Dekorsy T, Chong H W, et al. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale [J]. Physical Review B, 2004, 70: 161102.

    [52] Rini M, Hao Z, Schoenlein R W, et al. Optical switching in VO2 films by below-gap excitation [J]. Applied Physics Letters, 2008, 92(18):181904.

    [53] Morrison V R, Chatelain R P, Tiwari K L, et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction [J]. Science, 2014, 346(6208): 445-448.

    [54] Otto M, René de Cotret L, Valverde-Chavez D A, et al. How optical excitation controls the structure and properties of vanadium dioxide [J]. Proceedings of the National Academy of Sciences, 2019, 116(2): 450-455.

    [55] Xiao Y, Zhai Z H, Shi Q W, et al. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy [J]. Applied Physics Letters, 2015, 107(3): 031906.

    [56] mond N, Ibrahim A, Torriss B, et al. Impact of tungsten doping on the dynamics of the photo-induced insulator-metal phase transition in VO2 thin film investigated by optical pump-terahertz probe spectroscopy [J]. Applied Physics Letters, 2017, 111(9): 092105.

    [57] Wang C L, Tian Z, Xing Q R, et al. Photo-induced insulator-metal transition of silicon-based VO2 nanofilm by THz time domain spectroscopy [J]. Acta Physica Sinica, 2010, 59(11): 7857.

    [58] Cocker T L, Titova L V, Fourmaux S, et al. Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film [J]. Applied Physics Letters, 2010, 97: 221905.

    [59] Pashkin A, Kubler C, Ehrke H, et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy [J]. Physical Review B, 2011, 83(19): 195120.

    [60] Wang C L, Wu S, Li L F, et al. Research on THz time domain spectrum of photo-induced insulator-metal phase transition of VO2 films [J]. Spetroscopy and Spectral Analysis, 2015, 35(11): 3046-3049.

    [61] Yang P D, Ouyang C, Hong T S, et al. Study of phase transition of single crystal and polycrystalline vanadium dioxide nanofilms by using continuous laser pump-terahertz probe technique [J]. Acta Physica Sinica, 2020, 69(20): 88-95.

    [62] Becker M F, Buckman A B, Walser R M, et al. Femtosecond laser excitation dynamics of the semiconductor-metal phase transition in VO2 [J]. Journal of Applied Physics, 1996, 79(5): 2404-2408.

    [63] Lysenko S, Vikhnin V, Fernandez F, et al. Photoinduced insulator-to-metal phase transition in VO2 crystalline films and model of dielectric susceptibility [J]. Physical Review B, 2007, 75(7): 075109.

    [64] Abreu E, Gilbert Corder S N, Yun S J, et al. Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films [J]. Physical Review B, 2017, 96(9): 094309.

    [65] Clark J K, Ho Y L, Matsui H, et al. Photoinduced metal-like phase of VO2 with subns recovery [J]. ACS Photonics, 2020, 7(9): 2395-2404.

    [66] Feng H Q. Research on Preparation and Phase Transition Properties in the Terahertz Band of Vanadium Oxide Thin Films [D]: Chengdu: University of Electronic Science and Technology of China, 2017.

    [67] Wen Q Y, Zhang H W, Yang Q H, et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability [J]. Applied Physics Letters, 2010, 97: 021111.

    [68] Liu Z Q, Chang S J, Wang X L, et al. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film [J]. Acta Physica Sinica, 2013, 62(13): 130702.

    [69] Dong Y, Yu D W, Li G S, et al. Terahertz metamaterial modulator based on phase change material VO2 [J]. Symmetry, 2021, 13: 2230.

    [70] Hu F, Wang H, Zhang X L, et al. Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 1-7.

    [71] Zhao S, Hu F R, Xu X L, et al. Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich [J]. Chinese Physics B, 2019, 28(5): 054203.

    [72] Fan Y, Qian Y, Yin S, et al. Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial [J]. Materials Research Express, 2019, 6(5): 055809.

    [73] Song Z Y , Wang K, Li J W, et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials [J]. Optics Express, 2018, 26(6): 7148-7154.

    [74] Song C, Wang J, Zhang B, et al. Dual-band/ultra-broadband switchable terahertz metamaterial absorber based on vanadium dioxide and graphene [J]. Optics Communications, 2022, 530(8): 129027.

    [75] Yang G S, Yan F P, Du X M, et al. Tunable broadband terahertz metamaterial absorber based on vanadium dioxide [J]. AIP Advances, 2022, 12(4): 045219.

    [76] Jiao X F, Zhang Z H, Tong L, et al. Tunable dual broadband terahertz metamaterial absorber based on vanadium dioxide [J]. Applied Sciences, 2020, 10: 7259.

    [77] Liu Y C. Research on Terahertz Tunable Absorbers Based on Vanadium Dioxide [D]. Guilin: Guilin University of Electronic Technology of China, 2021.

    [78] Wu Y, Xu W, Zhou H, et al. Tunableness of single-band and dual-band absorption and filtering using vanadium-dioxide-based metamaterial [J]. Applied Physics A, 2022, 128(10): 930.

    [79] Seo M, Kyoung J, Park H, et al. Active terahertz nanoantennas based on VO2 phase transition [J]. Nano Letters, 2010, 10(6): 2064-2068.

    [80] Xiong Y. The Research on Silica Based Vanadium Dioxide Thin Films and Its Applications of Terahertz Switch [D]. Chengdu: University of Electronic Science and Technology of China, 2015.

    [81] Choi S B, Kyoung J S, Kim H S, et al. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film [J]. Applied Physics Letters, 2011, 98(7): 711051.

    [82] Coppinger M, Sustersic N, Kolodzey J, et al. Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging [J]. Optical Engineering, 2011, 50(5): 053206.

    [83] Vegesna S, Zhu Y, Zhao Y, et al. Terahertz frequency selective surface with reconfigurable polarization characteristics using vanadium dioxide [J]. Journal of Electromagnetic Waves and Applications, 2014, 28(1): 83-90.

    [84] Zhao Y C, Zhang Y X, Shi Q W, et al. Dynamic photo-induced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures [J]. ACS Photonics, 2018, 5(8): 3040-3050.

    [85] Chen S C, Yuan H K, Zhai Z H, et al. All optically driven memory device for terahertz waves [J]. Optics Letters, 2020, 45(1): 236-239.

    WANG Kang, LIU Yi, SONG Liwei. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238
    Download Citation