• Acta Physica Sinica
  • Vol. 68, Issue 9, 090203-1 (2019)
Tao Jiang, Jin-Jing Huang, Lin-Guang Lu, and Jin-Lian Ren*
DOI: 10.7498/aps.68.20190169 Cite this Article
Tao Jiang, Jin-Jing Huang, Lin-Guang Lu, Jin-Lian Ren. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method[J]. Acta Physica Sinica, 2019, 68(9): 090203-1 Copy Citation Text show less
Curve of the along x-axis at different time with : (a) ; (b) .时不同时刻的实部沿x轴的变化 (a) ; (b)
Fig. 1. Curve of the along x-axis at different time with : (a) ; (b) . 时不同时刻 的实部沿x轴的变化 (a) ; (b)
Curve of the along x-axis at different time with : (a) t = 0.1; (b) t = 1.时不同时刻的实部沿x轴的变化 (a) t = 0.1; (b) t = 1
Fig. 2. Curve of the along x-axis at different time with : (a) t = 0.1; (b) t = 1. 时不同时刻 的实部沿x轴的变化 (a) t = 0.1; (b) t = 1
Solitary wave propagation process of at different time with the initial condition 1: (a) ; (b) ; (c) ; (d) .初始条件1下, 在4个不同时刻孤立波函数的传播过程 (a) ; (b) ; (c) ; (d)
Fig. 3. Solitary wave propagation process of at different time with the initial condition 1: (a) ; (b) ; (c) ; (d) . 初始条件1下, 在4个不同时刻孤立波函数 的传播过程 (a) ; (b) ; (c) ; (d)
Solitary wave propagation process of at different time with initial condition 2: (a) ; (b) ; (c) ; (d) .初始条件2下, 在4个不同时刻三孤立子波函数的传播过程 (a) ; (b) ; (c) ; (d)
Fig. 4. Solitary wave propagation process of at different time with initial condition 2: (a) ; (b) ; (c) ; (d) . 初始条件2下, 在4个不同时刻三孤立子波函数 的传播过程 (a) ; (b) ; (c) ; (d)
Contours of obtained using different methods at two different times: (a) ; (b) .在两个不同时刻不同数值方法得到的等值线图 (a) ; (b)
Fig. 5. Contours of obtained using different methods at two different times: (a) ; (b) . 在两个不同时刻不同数值方法得到的 等值线图 (a) ; (b)
Curve of along y-axis at different time.不同时刻沿y轴变化曲线
Fig. 6. Curve of along y-axis at different time. 不同时刻 沿y轴 变化曲线
Contour of along different profile at different time: (a) ; (b) .在3个不同时刻在不同截面上的等值线 (a) 截面; (b)截面
Fig. 7. Contour of along different profile at different time: (a) ; (b) . 在3个不同时刻 在不同截面上的等值线 (a) 截面; (b) 截面
Curve of along x-axis (= 0.5) at two different time: (a) = 0.05; (b) = 0.25.两个不同时刻下沿轴(= 0.5)的变化 (a) = 0.05; (b) = 0.25
Fig. 8. Curve of along x-axis ( = 0.5) at two different time: (a) = 0.05; (b) = 0.25. 两个不同时刻下 沿 轴( = 0.5)的变化 (a) = 0.05; (b) = 0.25
Contours of three physical quantities at two different times t = 0 (the first row) and t = 0.25 (the second row): (a1), (a2) ; (b1), (b2) ; (c1), (c2) .两个不同时刻下t = 0 (第一列)和t = 0.25 (第二列)三个物理量等值线变化 (a1), (a2) ; (b1), (b2) ; (c1), (c2)
Fig. 9. Contours of three physical quantities at two different times t = 0 (the first row) and t = 0.25 (the second row): (a1), (a2) ; (b1), (b2) ; (c1), (c2) . 两个不同时刻下t = 0 (第一列)和t = 0.25 (第二列)三个物理量等值线变化 (a1), (a2) ; (b1), (b2) ; (c1), (c2)
时间tSS-ICPSPHHSS-CPSPH
0.51.697 × 10–31.696 × 10–3
13.616 × 10–32.494 × 10–3
27.347 × 10–34.857 × 10–3
Table 1. Error obtained using two different methods at different time ( ). 时几个不同时刻里两种方法的误差
$h = {\text{π}}/32$$h = {\text{π}}/64$$h = {\text{π}}/128$
${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$
SS-ICPSPH1.381 × 10–23.616 × 10–31.9339.0412 × 10–42.00
HSS-CPSPH1.381 × 10–22.494 × 10–32.474.498 × 10–42.47
Table 2. Error and convergent order obtained using two different methods at and different particle distance ( ). , 时间t = 1时, 两种方法在不同粒子间距下的误差和收敛阶
均匀分布粒子非均匀分布情形1非均匀分布情形2
$t = 0.1$$t = 1$$t = 0.1$$t = 1$$t = 0.1$$t = 1$
SS-ICPSPH2.776 × 10–43.616 × 10–32.944 × 10–43.818 × 10–33.116 × 10–44.082 × 10–3
HSS-CPSPH2.774 × 10–42.494 × 10–32.886 × 10–42.527 × 10–32.967 × 10–42.578 × 10–3
Table 3. Error obtained using different methods at different distribution ( , ). 时, 粒子分布均匀或不均匀方式下, 两种方法的误差
时间tSS-ICPSPHHSS-CPSPH
0.59.131 × 10–44.512 × 10–4
11.828 × 10–38.135 × 10–4
23.658 × 10–31.623 × 10–3
Table 4. Error obtained using two different methods at three times ( ). 时, 三个不同时刻两种方法的最大误差
$h = {\text{π}}/32$$h = {\text{π}}/64$$h = {\text{π}}/128$
${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$${e_{\rm{m}}}$$o{r_{\rm{\alpha }}}$
SS-ICPSPH7.553 × 10–31.828 × 10–32.0464.316 × 10–42.082
HSS-CPSPH4.534 × 10–38.135 × 10–42.4761.379 × 10–42.560
Table 5.

Error and order of convergence by different methods at t = 1 and different h.

t = 1时不同空间步长情况下两种粒子方法的误差和收敛阶

CPU数量步数相对加速比S
num = 1 num = 10 num = 1000
297805.91075081174728
1216716.918516.7215526.7
248388.879404.37120284.371.792
365603.296344.9887524.982.462
722948.833189.2448564.284.438
Table 6. Consumed CPU time (unit: s) of different calculated time step with particle number at different CPUs. 粒子数为 时, 不同CPU个数下运行到不同步数所需时间(单位: s)
粒子数CPU数量
212243672
${121^3}$449.5582.92645.96235.00019.585
${161^3}$1076.922198.810111.9081.92247.363
${181^3}$1558.445292.711164.838120.88665.437
${201^3}$2190.921425.688235.775179.85696.836
Table 7.

The average consumed CPU time (unit: s) of calculated time step 1000 with different particle number and different CPUs.

在不同粒子数下不同CPU个数下, 运行到1000步时平均每步所消耗时间(单位: s)

Tao Jiang, Jin-Jing Huang, Lin-Guang Lu, Jin-Lian Ren. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method[J]. Acta Physica Sinica, 2019, 68(9): 090203-1
Download Citation