• Acta Physica Sinica
  • Vol. 68, Issue 9, 090203-1 (2019)
Tao Jiang, Jin-Jing Huang, Lin-Guang Lu, and Jin-Lian Ren*
DOI: 10.7498/aps.68.20190169 Cite this Article
Tao Jiang, Jin-Jing Huang, Lin-Guang Lu, Jin-Lian Ren. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method[J]. Acta Physica Sinica, 2019, 68(9): 090203-1 Copy Citation Text show less

Abstract

To improve the numerical accuracy and computational efficiency of solving high-dimensional nonlinear Schr dinger/Gross-Pitaevskii (NLS/GP) equation by using traditional SPH method, a high-order split-step coupled with a corrected parallel SPH (HSS-CPSPH) method is developed by applying virtual particles to the boundary. The improvements are described as follows. Firstly, the nonlinear Schr dinger equation is divided into linear derivative term and nonlinear term based on the high-order split-step method. Then, the linear derivative term is solved by extending the first-order symmetric SPH method in explicit time integration. Meanwhile, the MPI parallel technique is introduced to enhance the computational efficiency. In this work, the accuracy, convergence and the computational efficiency of the proposed method are tested by solving the NLS equations with the periodic and Dirichlet boundary conditions, and compared with the analytical solutions. Also, the singularity of solitary waves under the periodic boundary condition is accurately obtained using the proposed particle method. Subsequently, the proposed HSS-CPSPH method is used to predict the results of complex two-dimensional and three-dimensioanl GP problems which are compared with other numerical results. The phenomenon of singular sharp angle in the propagation of nonlinear solitary wave and the process of quantum vortex under Bose-Einstein condensates with external rotation are presented accurately.
$\begin{split} {\rm{i}}\dfrac{{\partial \phi \left( {{{x}},t} \right)}}{{\partial t}} = &- \dfrac{{\rm{1}}}{{\rm{2}}}\Delta \phi + {V_d}\left( {{{x}},t} \right)\phi + {\beta _d}{\left| \phi \right|^2}\phi - {\varOmega}{L_z}\phi ,\\ &{{x}} \in {{{R}}^d},\;t \geqslant 0,\end{split}$ (1)

View in Article

${V_d}\left( {x,t} \right) = \left\{ \begin{aligned} & \dfrac{1}{2}{x^2},\quad\quad\quad\quad\quad\quad\quad\quad\quad\; d = 1,\\ & \left( {{x^2} + {\gamma _y}^2{y^2}} \right)/2,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;d = 2,\\ & \left( {{x^2} + {\gamma _y}^2{y^2} + {\gamma _z}^2{z^2}} \right)/2,\;\;d = 3, \end{aligned} \right. $ (2)

View in Article

$ \phi \left( {{{x}},0} \right) = \phi \left( {{x}} \right),\;{{x}} \in {{{R}}^d}, $ (3)

View in Article

$\mathop {\lim }\limits_{\left| {{x}} \right| \leftarrow \infty } \phi \left( {{{x}},t} \right) = 0,\;t \geqslant 0,$(4)

View in Article

$ {\rm{i}}\dfrac{{\partial \phi \left( {{{x},}t} \right)}}{{\partial t}} = \left( {A + B} \right)\phi \left( {{{x}},t} \right),\;{{x}} \in {{{R}}^d}, $ (5)

View in Article

${\rm{i}}\dfrac{{\partial \phi \left( {{{x}},t} \right)}}{{\partial t}} = A\phi $(6)

View in Article

${\rm{i}}\dfrac{{\partial \phi \left( {{{x}},t} \right)}}{{\partial t}} = B\phi .$(7)

View in Article

$ \left\langle {\phi \left( {{x}} \right)} \right\rangle = \int_\varOmega {\phi \left( {{{{x}}{'}}} \right)} W\left( {{{x}} - {{{x}}{'}},h} \right){\rm{d}}{{{x}}{'}}, $ (8)

View in Article

$ \left\langle {\nabla \phi \left( x \right)} \right\rangle = \int_\varOmega {\phi \left( {{{{x}}{'}}} \right)\nabla W{\rm{d}}{{{x}}{'}}} - \phi \left( {{x}} \right)\int_\varOmega {\nabla W{\rm{d}}{{{x}}{'}}}, $ (9)

View in Article

${\phi _i} = \sum\limits_j {{\phi _j}{W_{ij}}{v_j}} ,$(10)

View in Article

$\left( {\dfrac{{\partial \phi }}{{\partial {x_i}}}} \right) = \sum\limits_j {\left( {{\phi _j} - {\phi _i}} \right){\nabla _i}{W_{ij}}} {v_j}.$(11)

View in Article

${\nabla _i}{W_{ij}} = - {\nabla _j}{W_{ij}}.$(12)

View in Article

$\left( {\dfrac{{\partial \phi }}{{\partial {{{x}}_i}}}} \right) = \sum\limits_j {\left( {{\phi _j} - {\phi _i}} \right)} \nabla _i^c {{\widehat W_{ij}}} {v_j},$(13)

View in Article

${A^s}\left(\!\!\!\begin{array}{l} \partial \widehat W {_{ij}^c}/\partial {x_i}\\ \partial \widehat W {_{ij}^c}/\partial {y_i}\\ \partial \widehat W {_{ij}^c}/\partial {z_i} \end{array}\!\!\!\right) = \left(\!\!\begin{array}{l} {x_{ji}}{W_{ij}}\\ {y_{ji}}{W_{ij}}\\ {z_{ji}}{W_{ij}} \end{array}\!\!\right).$(14)

View in Article

$\phi _i^* = {{\rm{e}}^{ - {\rm{i}}{d_1}\left( {{V_1} + \beta {{\left| {\phi _i^n} \right|}^2}} \right){\rm{d}}t}}\phi _i^n,$(15)

View in Article

$\left( {\dfrac{{\partial \phi }}{{\partial {{x}}}}} \right)_i^{**} = {\sum\limits_j {{v_j}\phi _{ji}^{**}\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial {{x}}}}} \right)} _i},$(16)

View in Article

$\begin{split} &{\rm{i}}\dfrac{{\phi _i^{**} - \phi _i^*}}{{{\rm{d}}t}} \\=\; & {c_1}\Bigg[ { - \dfrac{1}{2}} \Bigg.\left\{ {\sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_j^{**}\!\!- \left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**}} \right)} }\right.\!\!{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial x}}} \right)_i}\\ &+ \sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_j^{**} - \left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**}} \right)} {\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial y}}} \right)_i} \\ &+ \left. {\sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_j^{**} - \left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_i^{**}} \right)} {{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial z}}} \right)}_i}} \right\}\\ &+ \Bigg. {{\rm{i}}\varOmega \left( {{x_i}\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**} - {y_i}\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**}} \right)} \Bigg], \end{split} $(17)

View in Article

$\left( {\dfrac{{\partial \phi }}{{\partial {{x}}}}} \right)_i^{**{\rm{*}}} = {\sum\limits_j {{v_j}\phi _{ji}^{**{\rm{*}}}\left( {\dfrac{{\partial {\widehat W_{ij}^c}}}{{\partial {{x}}}}} \right)} _i},$(18)

View in Article

$\begin{split} & {\rm{i}}\dfrac{{\phi _i^{**{\rm{*}}} - \phi _i^{*{\rm{*}}}}}{{{\rm{d}}t}} \\ =\; & {c_2}\Bigg[ { - \dfrac{1}{2}} \Bigg.\left\{\!{\sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_j^{**{\rm{*}}}\!\!- \left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**{\rm{*}}}} \right)} }\right.\!\!{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial x}}} \right)_i} \\ & + \sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_j^{**{\rm{*}}} - \left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**{\rm{*}}}} \right)} {\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial y}}} \right)_i} \\ & + \left. {\sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_j^{*{\rm{*}}*} - \left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_i^{**{\rm{*}}}} \right)} {{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial z}}} \right)}_i}} \right\}\\ & + \Bigg. {{\rm{i}}\varOmega \left( {{x_i}\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**{\rm{*}}} - {y_i}\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**{\rm{*}}}} \right)} \Bigg], \end{split}$(19)

View in Article

$\phi _i^{*{\rm{***}}} = {{\rm{e}}^{ - {\rm{i}}{d_2}\left( {{V_1} + \beta {{\left| {\phi _i^{{\rm{***}}}} \right|}^2}} \right){\rm{d}}t}}\phi _i^{{\rm{***}}},$(20)

View in Article

$\left( {\dfrac{{\partial \phi }}{{\partial {{x}}}}} \right)_i^{**{\rm{***}}} = {\sum\limits_j {{v_j}\phi _{ji}^{**{\rm{***}}}\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial {{x}}}}} \right)} _i},$(21)

View in Article

$\begin{split} & {\rm{i}}\dfrac{{\phi _i^{**{\rm{***}}} - \phi _i^{*{\rm{***}}}}}{{{\rm{d}}t}}\\ =\;& {c_3}\Bigg[ { - \dfrac{1}{2}}\!\! \Bigg.\left\{\!{\sum\limits_j {{v_j}\!\!\left( {\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_j^{**{\rm{***}}} \!\!-\!\!\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**{\rm{***}}}} \right)}}\right.\!\!{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial x}}} \right)_i}\\ &+ \sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_j^{**{\rm{***}}} - \left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**{\rm{***}}}} \right)} {\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial y}}} \right)_i} \\ & + \left. {\sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_j^{*{\rm{*}}*{\rm{**}}} - \left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_i^{**{\rm{***}}}} \right)} {{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial z}}} \right)}_i}} \right\}\\ &+ \Bigg. {{\rm{i}}\varOmega \left( {{x_i}\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**{\rm{***}}} - {y_i}\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**{\rm{***}}}} \right)} \Bigg] ,\end{split}$(22)

View in Article

$\left( {\dfrac{{\partial \phi }}{{\partial {{x}}}}} \right)_i^{**{\rm{****}}} = {\sum\limits_j {{v_j}\phi _{ji}^{**{\rm{****}}}\left( {\dfrac{{\partial {\widehat W_{ij}^c}}}{{\partial {{x}}}}} \right)} _i},$(23)

View in Article

$\begin{split} & {\rm{i}}\dfrac{{\phi _i^{**{\rm{****}}} - \phi _i^{*{\rm{****}}}}}{{{\rm{d}}t}} \\ =\; & {c_4}\Bigg[ { - \dfrac{1}{2}} \!\!\Bigg.\left\{\!{\sum\limits_j {{v_j}\!\!\left( {\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_j^{**{\rm{****}}} \!-\!\!\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**{\rm{****}}}}\right)}} \right.\!\!{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial x}}} \right)_i} \\ & + \sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_j^{**{\rm{****}}} - \left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**{\rm{****}}}} \right)} {\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial y}}} \right)_i} \\ & + \left. {\sum\limits_j {{v_j}\left( {\left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_j^{*{\rm{*}}*{\rm{***}}} - \left( {\dfrac{{\partial \phi }}{{\partial z}}} \right)_i^{**{\rm{****}}}} \right)} {{\left( {\dfrac{{\partial {\widehat W_{ij}^c} }}{{\partial z}}} \right)}_i}} \right\} \\ & +\Bigg. {{\rm{i}}\varOmega \left( {{x_i}\left( {\dfrac{{\partial \phi }}{{\partial y}}} \right)_i^{**{\rm{****}}} - {y_i}\left( {\dfrac{{\partial \phi }}{{\partial x}}} \right)_i^{**{\rm{****}}}} \right)} \Bigg] ,\end{split}$(24)

View in Article

$\phi _i^{{n} + {\rm{1}}} = {{\rm{e}}^{ - {\rm{i}}{d_3}({V_1} + \beta |\phi _i^{{\rm{******}}}{|^2}){\rm{d}}t}}\phi _i^{{\rm{******}}},$(25)

View in Article

$\left( {x,y} \right) \in \left[ {{X_a},{X_b}} \right] \times \left[ {{Y_a},{Y_b}} \right],\;0 \leqslant t \leqslant T,$ ()

View in Article

$\begin{split} & {x_{ - 1}} = {X_a} - {h_1},\;{x_{ - 2}} = {X_a} - 2{h_1},\\ &{x_{ - 3}} = {X_a} - 3{h_1},\;{x_{ - 4}} = {X_a} - 4{h_1},\\ & {x_{J + 1}} = {X_a} + \left( {J + 1} \right){h_1},\;{x_{J + 2}} = {X_a} + \left( {J + 2} \right){h_1},\\ &{x_{J + 3}} = {X_a} + \left( {J + 3} \right){h_1},\;{x_{J + 4}} = {X_a} + \left( {J + 4} \right){h_1},\\ & {y_{ - 1}} = {Y_a} - {h_2},\;{y_{ - 2}} = {Y_a} - 2{h_2},\\ &{y_{ - 3}} = {Y_a} - 3{h_2},\;{y_{ - 4}} = {Y_a} - 4{h_2},\\ & {y_{J + 1}} = {Y_a} + \left( {J + 1} \right){h_2},\;{y_{J + 2}} = {Y_a} + \left( {J + 2} \right){h_2},\\ &{y_{J + 3}} = {Y_a} + \left( {J + 3} \right){h_2},\;{y_{J + 4}} = {Y_a} + \left( {J + 4} \right){h_2},\end{split}$()

View in Article

$ \begin{split} & {W_{ij}} = W(r_{ij},h) \\ = &\; {w_0} \begin{cases} (3 - q)^5 - 6 (2 - q)^5 + 15(1 - q)^5, & 0 \leqslant q < 1, \\ (3 - q)^5 - 6(2 - q)^5 , & 1 \leqslant q < 2, \\ (3 - q)^5, & 2\leqslant q < 3, \\ 0, & q \geqslant 3, \end{cases} \end{split} $ (27)

View in Article

${e_{\rm{m}}} = {\left\| {{\phi _{{\rm{exact}}}} - {\phi _{{\rm{numerical}}}}} \right\|_\infty },$(28)

View in Article

$o{r_{\rm{\alpha }}} \approx \dfrac{{\log \left( {{e_{\rm{m}}}\left( {{d_{02}}} \right)/{e_{\rm{m}}}\left( {{d_{01}}} \right)} \right)}}{{\log \left( {{d_{02}}/{d_{01}}} \right)}},$(29)

View in Article

$ {\rm{i}}{u_t} + \Delta u + \beta {\left| u \right|^2}u = 0, $ ()

View in Article

$ u\left( {x,y,t} \right) = A\exp \left[ {{\rm{i}}\left( {{k_1}x + {k_2}y - wt} \right)} \right], $ ()

View in Article

$ \begin{split} & u(x,y,t) = u(x + 2{\rm{\pi }},y,t),\\ & u(x,y,t) = u(x,y + 2{\rm{\pi }},t),\\ & (x,y) \in R \times R,\;0 < t \leqslant T,\;T = 1. \end{split} $ ()

View in Article

$ \left\{ \begin{aligned} & {\rm{i}}{u_t} + {\rm{i}}\alpha {u_x} + \dfrac{1}{2}{u_{xx}} + \left( {{{\left| u \right|}^2} + \beta {{\left| v \right|}^2}} \right)u = 0,\\ & {\rm{i}}{v_t} - {\rm{i}}\alpha {v_x} + \dfrac{1}{2}{v_{xx}} + \left( {{{\left| v \right|}^2} + \beta {{\left| u \right|}^2}} \right)v = 0. \end{aligned} \right. $ ()

View in Article

$ \begin{split} u\left( {x,0} \right) =\;&\sqrt {\dfrac{{2\alpha }}{{1 + \beta }}} {\rm{sech}}\left( {\sqrt {2a} \left( {x - {x_0}} \right)} \right)\\ & \times\exp \left\{ {{\rm{i}}\left[ {\left( {c - \alpha } \right)\left( {x - {x_0}} \right)} \right]} \right\},\\ v\left( {x,0} \right) =\;&\sqrt {\dfrac{{2\alpha }}{{1 + \beta }}} {\rm{sech}}\left( {\sqrt {2a} \left( {x - {x_0}} \right)} \right)\\ &\times\exp \left\{ {{\rm{i}}\left[ {\left( {c - \alpha } \right)\left( {x - {x_0}} \right)} \right]} \right\}, \end{split} $ ()

View in Article

$\begin{aligned} u\left( {x,0} \right) =\; & \sum\limits_{j = 1}^3 {\sqrt {\dfrac{{2{a_j}}}{{1 + \beta }}} } {\rm{sech}}\left( {\sqrt {2{a_j}} \left( {x - {x_j}} \right)} \right)\\ & \times\exp \left\{ {{\rm{i}}\left[ {\left( {{c_j} - \alpha } \right)\left( {x - {x_j}} \right)} \right]} \right\},\\ v\left( {x,0} \right) =\; &\sum\limits_{j = 1}^3 {\sqrt {\dfrac{{2{a_j}}}{{1 + \beta }}} } {\rm{sech}}\left( {\sqrt {2{a_j}} \left( {x - {x_j}} \right)} \right)\\ & \times\exp \left\{ {{\rm{i}}\left[ {\left( {{c_j} - \alpha } \right)\left( {x - {x_j}} \right)} \right]} \right\}, \end{aligned}$()

View in Article

$\begin{split} {\rm{i}}\dfrac{{\partial u}}{{\partial t}}=& - \dfrac{1}{2}( {{u_{xx}}+{u_{yy}}} ) + V( {x,y} )u +{| u |^2}u, \\ & ( {x,y} ) \!\in\!{[ {0,2{\text{π}}} ]^2}, \end{split} $ ()

View in Article

$ {\rm{i}}{u_t} + \Delta u + \beta {\left| u \right|^2}u = 0, $ ()

View in Article

$\begin{aligned} {\rm{i}}\dfrac{{\partial u}}{{\partial t}} =\;& - \dfrac{1}{2}\left( {{u_{xx}} + {u_{yy}} + {u_{zz}}} \right) + V\left( {x,y,z} \right)u \\ &+ \beta {\left| u \right|^2}u - \varOmega {L_z}u,\left( {x,y,z} \right) \in {\left[ {- 10,10} \right]^3},\end{aligned}$ ()

View in Article

$\left\{ \begin{aligned} & {\rm{i}}\dfrac{{\partial {u_1}}}{{\partial t}} + \dfrac{1}{2}\dfrac{{{\partial ^2}{u_1}}}{{\partial {x^2}}} + \dfrac{1}{2}\dfrac{{{\partial ^2}{u_1}}}{{\partial {y^2}}} + \sigma \left( {{{\left| {{u_1}} \right|}^2} + \varsigma {{\left| {{u_2}} \right|}^2}} \right){u_1} \\ &\quad\quad\, + {w_1}\left( {x,y} \right){u_1} + {\rm{i}}\varTheta \left( {y\dfrac{{\partial {u_1}}}{{\partial x}} - x\dfrac{{\partial {u_1}}}{{\partial y}}} \right) = 0,\\ & {\rm{i}}\dfrac{{\partial {u_2}}}{{\partial t}} + \dfrac{1}{2}\dfrac{{{\partial ^2}{u_2}}}{{\partial {x^2}}} + \dfrac{1}{2}\dfrac{{{\partial ^2}{u_2}}}{{\partial {y^2}}} + \sigma \left( {{{\left| {{u_2}} \right|}^2} + \varsigma {{\left| {{u_1}} \right|}^2}} \right){u_2} \\ &\quad\quad\, + {w_2}\left( {x,y} \right){u_2} + {\rm{i}}\varTheta \left( {y\dfrac{{\partial {u_2}}}{{\partial x}} - x\dfrac{{\partial {u_2}}}{{\partial y}}} \right) = 0. \end{aligned} \right. $()

View in Article

$ \left\{ \begin{aligned} & {u_1}\left( {x,y,0} \right) = \dfrac{{x + {\rm{i}}y}}{{\sqrt {\text{π}} }}\exp \left[ { - \dfrac{{\left( {{x^2} + {y^2}} \right)}}{2}} \right],\;\;{\rm{on }}\;\varOmega ,\\ & {u_2}\left( {x,y,0} \right) = \dfrac{{x + {\rm{i}}y}}{{\sqrt {\text{π}} }}\exp \left[ { - \dfrac{{\left( {{x^2} + {y^2}} \right)}}{2}} \right],\;\;{\rm{on }}\;\varOmega ,\\ & {u_1}\left( {x,y,t} \right) = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{on }}\;\partial \varOmega \times \left[ {0,\;T} \right],\\ & {u_2}\left( {x,y,t} \right) = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{on }}\;\partial \varOmega \times \left[ {0,\;T} \right], \end{aligned} \right. $ ()

View in Article

Tao Jiang, Jin-Jing Huang, Lin-Guang Lu, Jin-Lian Ren. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method[J]. Acta Physica Sinica, 2019, 68(9): 090203-1
Download Citation