• Laser & Optoelectronics Progress
  • Vol. 57, Issue 5, 050001 (2020)
Haiwen Cai1、2、*, Qing Ye1、2, Zhaoyong Wang1、2, and Bin Lu1、2
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.050001 Cite this Article Set citation alerts
    Haiwen Cai, Qing Ye, Zhaoyong Wang, Bin Lu. Distributed Optical Fiber Acoustic Sensing Technology Based on Coherent Rayleigh Scattering[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050001 Copy Citation Text show less
    References

    [1] Fang Z J, Chin K K, Qu R H et al. Fundamentals of optical fiber sensors[M]. Hoboken: John Wiley & Sons, Inc., 496(2012).

    [2] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 15, 2112-2115(1976). http://www.opticsinfobase.org/abstract.cfm?id=20434

    [3] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).

    [4] Healey P, Malyon D. OTDR in single-mode fibre at 1.55 μm using heterodyne detection[J]. Electronics Letters, 18, 862-863(1982).

    [5] King J P, Smith D F, Richards K et al. Development of a coherent OTDR instrument[J]. Journal of Lightwave Technology, 5, 616-624(1987).

    [6] Healey P. Fading rates in coherent OTDR[J]. Electronics Letters, 20, 443-444(1984).

    [7] Healey P. Fading in heterodyne OTDR[J]. Electronics Letters, 20, 30-32(1984).

    [8] Taylor H F, Lee C E. Apparatus. -03-16[P]. method for fiber optic intrusion sensing: US005194847A.(1993).

    [9] Juškaitis R, Mamedov A M, Potapov V T et al. Interferometry with Rayleigh backscattering in a single-mode optical fiber[J]. Optics Letters, 19, 225-227(1994).

    [10] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).

    [11] Juarez J C, Taylor H F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system[J]. Optics Letters, 30, 3284-3286(2005).

    [12] Rao Y J, Luo J, Ran Z L et al. Long-distance fiber-optic Φ-OTDR intrusion sensing system[J]. Proceedings of SPIE, 7503, 75031O(2009).

    [13] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[J]. Proceedings of SPIE, 8311, 83110S(2011).

    [14] Wang Z Y. Study on key technologies of long-haul Φ-OTDR[D]. Shanghai: University of Chinese Academy of Sciences(2017).

    [15] Pouet B, Breugnot S, Clémenceau P. Robust laser-ultrasonic interferometer based on random quadrature demodulation[J]. AIP Conference Proceedings, 820, 233(2006).

    [16] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).

    [17] Dong Y K, Chen X, Liu E H et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer[J]. Applied Optics, 55, 7810-7815(2016).

    [18] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 24, 085204(2013).

    [19] Wang C, Wang C, Shang Y et al. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry[J]. Optics Communications, 346, 172-177(2015).

    [20] Fang G S, Xu T W, Feng S W et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 33, 2811-2816(2015).

    [21] Muanenda Y, Faralli S, Oton C J et al. Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection[J]. Optics Express, 26, 687-701(2018).

    [22] Alekseev A E, Vdovenko V S, Gorshkov B G et al. A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal[J]. Laser Physics, 25, 065101(2015).

    [23] Pan Z Q, Liang K Z, Zhou J et al. Interference-fading-free phase-demodulated OTDR system[J]. Proceedings of SPIE, 8421, 842129(2012).

    [24] Muanenda Y, Faralli S, Oton C J et al. Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection[J]. Optics Express, 26, 687-701(2018).

    [25] He X G, Liu F, Qin M Z et al. Phase-sensitive optical time-domain reflectometry with heterodyne demodulation. [C]∥25th International Conference on Optical Fiber Sensors, 1-4(2017).

    [26] Wang Z N, Zhang B, Xiong J et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR[J]. IEEE Internet of Things Journal, 6, 6117-6124(2019).

    [27] Sha Z, Feng H, Zeng Z M. Phase demodulation method in phase-sensitive OTDR without coherent detection[J]. Optics Express, 25, 4831-4844(2017).

    [28] Zhou L, Wang F, Wang X C et al. Distributed strain and vibration sensing system based on phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 27, 1884-1887(2015).

    [29] Pastor-Graells J, Martins H F, Garcia-Ruiz A et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 24, 13121-13133(2016).

    [30] Chen D, Liu Q W, He Z Y. Distributed fiber-optic acoustic sensor with sub-nano strain resolution based on time-gated digital OFDR. [C]∥Asia Communications and Photonics Conference, Guangzhou, Guangdong. Washington, D.C.: OSA, S4A, 2(2017).

    [31] Ren M Q, Lu P, Chen L et al. Theoretical and experimental analysis of Φ-OTDR based on polarization diversity detection[J]. IEEE Photonics Technology Letters, 28, 697-700(2016).

    [32] Qin Z G, Zhu T, Chen L et al. High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR[J]. IEEE Photonics Technology Letters, 23, 1091-1093(2011).

    [33] Gabai H, Eyal A. On the sensitivity of distributed acoustic sensing[J]. Optics Letters, 41, 5648-5651(2016).

    [34] Hartog A H, Liokumovich L B, Ushakov N A et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic-distributed vibration sensing[J]. Geophysical Prospecting, 66, 192-202(2018).

    [35] Wang X, Lu B, Wang Z Y et al. Interference-fading-free Φ-OTDR based on differential phase shift pulsing technology[J]. IEEE Photonics Technology Letters, 31, 39-42(2019).

    [36] Zhou J, Pan Z Q, Ye Q et al. Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source[J]. Journal of Lightwave Technology, 31, 2947-2954(2013).

    [37] Hartog A, Liokumovich L B, Ushakov N A et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic distributed vibration sensing. [C]∥78th EAGE Conference and Exhibition 2016, May 30-June 2, 2016. Vienna, Austria. Netherlands: EAGE Publications BV, 192-202(2016).

    [38] Zhang J D, Wu H T, Zheng H et al. 80 km fading free phase-sensitive reflectometry based on multi-carrier NLFM pulse without distributed amplification[J]. Journal of Lightwave Technology, 37, 4748-4754(2019).

    [39] Chen D, Liu Q W, He Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 25, 8315-8325(2017).

    [40] Alekseev A E, Vdovenko V S, Gorshkov B G et al. Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber[J]. Laser Physics, 26, 095101(2016).

    [41] Pan Z Q, Wang Z Y, Ye Q et al. High sampling rate multi-pulse phase-sensitive OTDR employing frequency division multiplexing[J]. Proceedings of SPIE, 9157, 91576X(2014).

    [42] Wang Z Y, Pan Z Q, Fang Z J et al. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source[J]. Optics Letters, 40, 5192-5195(2015).

    [43] Iida D, Toge K, Manabe T. High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR. [C]∥Optical Fiber Communication Conference, Anaheim, California. Washington, D.C.: OSA, M2D, 6(2016).

    [44] Iida D, Toge K, Manabe T. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR[J]. Optical Fiber Technology, 36, 19-25(2017).

    [45] Zhang Y X, Fu S Y, Chen Y S et al. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing[J]. Optical Fiber Technology, 53, 101995(2019).

    [46] He Q, Zhu T, Zhou J et al. Frequency response enhancement by periodical nonuniform sampling in distributed sensing[J]. IEEE Photonics Technology Letters, 27, 2158-2161(2015).

    [47] Zhang J D, Zheng H, Zhu T et al. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling[J]. Optics Letters, 43, 2022-2025(2018).

    [48] Zhang J D, Zhu T, Zheng H et al. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling[J]. Proceedings of SPIE, 10323, 103238H(2017).

    [49] Zou W W, Yang S, Long X et al. Optical pulse compression reflectometry: proposal and proof-of-concept experiment[J]. Optics Express, 23, 512-522(2015).

    [50] Lu B, Pan Z Q, Wang Z Y et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 42, 391-394(2017).

    [51] Lu B, Wang Z Y, Zheng H R et al. The achievement of high spatial resolution and long haul distributed fiber vibration sensing system[J]. Chinese Journal of Lasers, 44, 1015001(2017).

    [52] Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Applied Optics, 46, 1968-1971(2007).

    [53] Tejedor J. MacIas-Guarasa J, Martins H F, et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors, 17, E355(2017).

    [54] Sun Q, Feng H, Yan X Y et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 15, 15179-15197(2015).

    [55] Tan D J, Tian X Z, Sun W et al. An oil and gas pipeline pre-warning system based on Φ-OTDR[J]. Proceedings of SPIE, 9157, 91578W(2014).

    [56] Huang J F, Xu T W, Feng S W et al. Multiple disturbance detection and intrusion recognition in distributed acoustic sensing[J]. Proceedings of SPIE, 10849, 108490E(2018).

    [57] Jiang F, Li H L, Zhang Z H et al. An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN[J]. Proceedings of SPIE, 10618, 1061804(2018).

    [58] Chen J P, Wu H J, Liu X R et al. A real-time distributed deep learning approach for intelligent event recognition in long distance pipeline monitoring with DOFS. [C]∥2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), October 18-20, 2018. Zhengzhou, China. IEEE, 290-296(2018).

    [59] Wang Z Y, Pan Z Q, Ye Q et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chinese Journal of Lasers, 42, 0405010(2015).

    [60] Wang Z Y, Li L C, Zheng H R et al. Smart distributed acoustics/vibration sensing with dual path network. [C]∥26th International Conference on Optical Fiber Sensors, Lausanne. Washington, D.C.: OSA, WF105(2018).

    [61] Duan N, Peng F, Rao Y J. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry[J]. Proceedings of SPIE, 9157, 91577A(2014).

    [62] Cedilnik G, Hunt R, Lees G. Advances in train and rail monitoring with DAS. [C]∥Conference of Optical Fiber Sensors, ThE35(2018).

    [63] He Z Y, Liu Q W, Fan X Y et al. Fiber-optic distributed acoustic sensors (DAS) and applications in railway perimeter security[J]. Proceedings of SPIE, 10821, 1082102(2018).

    [64] Akkerman J, Prahl F. Fiber optic sensing for detecting rock falls on rail rights of way[M]. Washington: AREMA, 1099-1118(2013).

    [65] Wang Z Y, Lu B, Zheng H R et al. Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR[J]. Proceedings of SPIE, 10323, 103237G(2017).

    [66] Wang Z Y, Zheng H R, Li L C et al. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network[J]. Optics Express, 27, 23682-23692(2019).

    [67] Parker T, Shatalin S, Farhadiroushan M. Distributed acoustic sensing - a new tool for seismic applications[J]. First Break, 32, 61-69(2014).

    [68] Daley T M, Miller D E, Dodds K et al. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama[J]. Geophysical Prospecting, 64, 1318-1334(2016).

    [69] Harris K, White D, Melanson D et al. Feasibility of time-lapse VSP monitoring at the AquistoreCO2 storage site using a distributed acoustic sensing system[J]. International Journal of Greenhouse Gas Control, 50, 248-260(2016).

    [70] Byerley G, Monk D, Aaron P et al. Time-lapse seismic monitoring of individual hydraulic frac stages using a downhole DAS array[J]. The Leading Edge, 37, 802-810(2018).

    [71] Correa J, Pevzner R, Bona A et al. 7(1): SA11-SA19(2019).

    [72] Franciscangelis C, Margulis W, Floridia C et al. Aircraft distributed structural health monitoring based on φ-OTDR[C]. Aerospace Technology Congress(2016).

    [73] Michlmayr G, Chalari A, Clarke A et al. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure[J]. Landslides, 14, 1139-1146(2017).

    [74] Filograno M L, Riziotis C, Kandyla M. A low-cost phase-OTDR system for structural health monitoring: design and instrumentation[J]. Instruments, 3, 46(2019).

    [75] Masoudi A, Newson T P. Distributed optical fibre sensing with enhanced frequency range and sensitivity for structural health monitoring. [C]∥Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), Vancouver. Washington, D.C.: OSA, SeM3D, 2(2016).

    [76] Dou S, Lindsey N, Wagner A M et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study[J]. Scientific Reports, 7, 11620(2017).

    [77] Jousset P, Reinsch T, Ryberg T et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9, 2509(2018).

    [78] Lindsey N J, Dawe T C. Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 366, 1103-1107(2019).

    [79] Ajo-Franklin J B, Dou S, Lindsey N J et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 9, 1328(2019).

    [80] Steven L G, David A B, Brian L B et al. General purpose fiber optic hydrophone made of castable epoxy[J]. Proceedings of SPIE, 1367, 13-29(1990).

    [81] Philipp R, René E, Katerina K. Distributed acoustic sensing: Towards partial discharge monitoring[J]. Proceedings of SPIE, 9634, 96341C(2015).

    [82] Murray M J, Davis A, Redding B. Fiber-wrapped mandrel microphone for low-noise acoustic measurements[J]. Journal of Lightwave Technology, 36, 3205-3210(2018).

    [83] Loranger S, Gagné M, Lambin-Iezzi V et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 5, 11177(2015).

    [84] Yan A D, Huang S, Li S et al. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations[J]. Scientific Reports, 7, 9360(2017).

    [85] Murray M J, Davis A, Redding B. Multimode fiber Φ-OTDR with holographic demodulation[J]. Optics Express, 26, 23019-23030(2018).

    [86] Shpalensky N, Shiloh L, Gabai H et al. Use of distributed acoustic sensing for Doppler tracking of moving sources[J]. Optics Express, 26, 17690-17696(2018).

    [87] Liang J J, Wang Z Y, Lu B et al. Distributed acoustic sensing for 2D and 3D acoustic source localization[J]. Optics Letters, 44, 1690-1693(2019).

    [88] Den Boer J J, Pearce J G et al[P]. Fiber optic cable with increased directional sensitivity: US9091589B2, 07, 28(2015).

    [89] Ivan L, Chen N, Paul S. Multicomponent distributed acoustic sensing: Concept and theory[J]. Geophysics, 83, P1-P8(2018).

    Haiwen Cai, Qing Ye, Zhaoyong Wang, Bin Lu. Distributed Optical Fiber Acoustic Sensing Technology Based on Coherent Rayleigh Scattering[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050001
    Download Citation