• Journal of Inorganic Materials
  • Vol. 37, Issue 2, 230 (2022)
Qiuying XIA, Shuo SUN, Feng ZAN, Jing XU, and Hui XIA*
Author Affiliations
  • School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.15541/jim20210132 Cite this Article
    Qiuying XIA, Shuo SUN, Feng ZAN, Jing XU, Hui XIA. Amorphous LiSiON Thin Film Electrolyte for All-solid-state Thin Film Lithium Battery[J]. Journal of Inorganic Materials, 2022, 37(2): 230 Copy Citation Text show less
    References

    [1] S MOITZHEIM, B PUT, M VEREECKEN P. Advances in 3D thin-film Li-ion batteries. Advanced Materials Interfaces, 6, 1900805(2019).

    [2] Q XIA, Q ZHANG, S SUN et al. Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid- state thin film lithium microbatteries. Advanced Materials, 33, 2003524(2021).

    [3] Y DENG, C EAMES, B FLEUTOT et al. Enhancing the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Applied Materials & Interfaces, 9, 7050-7058(2017).

    [4] B BATES J, J DUDNEY N, R GRUZALSKI G et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of Power Sources, 43, 103-110(1993).

    [5] J BATES. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics, 53, 647-654(1992).

    [6] T FAMPRIKIS, J GALIPAUD, O CLEMENS et al. Composition dependence of ionic conductivity in LiSiPO(N) thin-film electrolytes for solid-state batteries. ACS Applied Energy Materials, 2, 4782-4791(2019).

    [7] Y DENG, C EAMES, N CHOTARD J et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4- Li3PO4 solid electrolytes. Journal of the American Chemical Society, 137, 9136-9145(2015).

    [8] R CHEN, X SONG. The ionic conductivity of solid electrolytes for Li4+xMxSi1-xO4-yLi2O (M=Al, B) systems. Journal of the Chinese Chemical Society, 49, 7-10(2002).

    [9] S ADNAN, S MOHAMED N. Effects of Sn substitution on the properties of Li4SiO4 ceramic electrolyte. Solid State Ionics, 262, 559-562(2014).

    [10] S SUN, Q XIA, J LIU et al. Self-standing oxygen-deficient α-MoO3-x nanoflake arrays as 3D cathode for advanced all-solid- state thin film lithium batteries. Journal of Materiomics, 5, 229-236(2019).

    [11] W DING, W LU, X DENG et al. An XPS study on the structure of SiNx film deposited by microwave ECR magnetron sputtering. Acta Physica Sinica, 58, 4109-4116(2009).

    [12] H KIM, Y KIM. Partial nitridation of Li4SiO4 and ionic conductivity of Li4.1SiO3.9N0.1. Ceramics International, 44, 9058-9062(2018).

    [13] M MARIKO, K HIDEMASA, O TOMOYUKI et al. Analysis of SiO anodes for lithium-ion batteries. Journal of The Electrochemical Society, 152, A2089(2005).

    [14] M FINGERLE, R BUCHHEIT, S SICOLO et al. Reaction and space charge layer formation at the LiCoO2-LiPON interface: insights on defect formation and ion energy level alignment by a combined surface science-simulation approach. Chemisty Materials, 29, 7675-7685(2017).

    [15] W WEST, Z HOOD, S ADHIKARI et al. Reduction of charge- transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source. Journal of Power Sources, 312, 116-122(2016).

    [16] S SICOLO, M FINGERLE, R HAUSBRAND et al. Interfacial instability of amorphous LiPON against lithium: a combined density functional theory and spectroscopic study. Journal of Power Sources, 354, 124-133(2017).

    [17] F WU, Y LIU, R CHEN et al. Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries. Journal of Power Sources, 189, 467-470(2009).

    [18] B PUT, M VEREECKEN, J MEERSSCHAUT et al. Electrical characterization of ultrathin RF-sputtered LiPON layers for nanoscale batteries. ACS Applied Materials & Interfaces, 8, 7060-7069(2016).

    [19] H NIINOMI, M MOTOYAMA, Y IRIYAMA. Li+ Conduction in Li-Nb-O films deposited by a Sol-Gel method. Solid State Ionics, 285, 13-18(2016).

    [20] S SONG, K LEE, H PARK. High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride. Journal of Power Sources, 328, 311-317(2016).

    [21] H OHTSUKA, S OKADA, J YAMAKI. Solid state battery with Li2O-V2O5-SiO2 solid electrolyte thin film. Solid State Ionics, 40-41, 964-966(1990).

    [22] D Kalita, S Lee, K Lee et al. Ionic conductivity properties of amorphous Li-La-Zr-O solid electrolyte for thin film batteries. Solid State Ionics, 229, 14-19(2012).

    [23] Y SAKURAI, A SAKUDA, A HAYASHI et al. Preparation of amorphous Li4SiO4-Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ionics, 182, 59-63(2011).

    [24] G TAN, F WU, L LI et al. Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. The Journal of Physical Chemistry C, 116, 3817-3826(2012).

    [25] X YU, B BATES J, G JELLISON et al. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. Journal of The Electrochemical Society, 144, 524(1997).

    [26] H KIM, J COOK, H LIN et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nature Materials, 16, 454-460(2017).

    [27] H SONG, S WANG, X SONG et al. Solar-driven all-solid-state lithium-air batteries operating at extreme low temperatures. Energy & Environmental Science, 13, 1205-1211(2020).

    [28] Z WANG, J LEE, H XIN et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. Journal of Power Sources, 324, 342-348(2016).

    [29] Y QIAO, H DENG, P HE et al. A 500 Wh/kg lithium-metal cell based on anionic redox. Joule, 4, 1311-1323(2020).

    Qiuying XIA, Shuo SUN, Feng ZAN, Jing XU, Hui XIA. Amorphous LiSiON Thin Film Electrolyte for All-solid-state Thin Film Lithium Battery[J]. Journal of Inorganic Materials, 2022, 37(2): 230
    Download Citation