• International Journal of Extreme Manufacturing
  • Vol. 2, Issue 3, 32004 (2020)
Ridong Wang1, Shen Xu2, Yanan Yue3, and Xinwei Wang4、*
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People’s Republic of China
  • 2School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, People’s Republic of China
  • 3School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, People’s Republic of China
  • 4Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States of America
  • show less
    DOI: 10.1088/2631-7990/aba17c Cite this Article
    Ridong Wang, Shen Xu, Yanan Yue, Xinwei Wang. Thermal behavior of materials in laser-assisted extreme manufacturing: Raman-based novel characterization[J]. International Journal of Extreme Manufacturing, 2020, 2(3): 32004 Copy Citation Text show less
    References

    [1] Kim K S, Kim J H, Choi J Y and Lee C M 2011 A review on research and development of laser assisted turning Int. J. Precis. Eng. Manuf. 12 753–9

    [2] Dutta Majumdar J and Manna I 2011 Laser material processing Int. Mater. Rev. 56 341–88

    [3] Zhao L J, Cheng J, Chen M J, Yuan X D, Liao W, Liu Q, Yang H and Wang H J 2019 Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing Int. J. Extrem. Manuf. 1 035001

    [4] Cvecek K, Dehmel S, Miyamoto I and Schmidt M 2019 A review on glass welding by ultra-short laser pulses Int. J. Extrem. Manuf. 1 042001

    [5] Gautam G D and Pandey A K 2018 Pulsed Nd: yAGlaser beam drilling: a review Opt. Laser Technol. 100 183–215

    [6] Dewil R, Vansteenwegen P and Cattrysse D 2016 A review of cutting path algorithms for laser cutters Int. J. Adv. Manuf. Technol. 87 1865–84

    [7] Yocom C J, Zhang X and Liao Y L 2018 Research and development status of laser peen forming: a review Opt. Laser Technol. 108 32–45

    [8] Barner-Kowollik C, Bastmeyer M, Blasco E, Delaittre G, Müller P, Richter B and Wegener M 2017 3D laser microand nanoprinting: challenges for chemistry Angew. Chem. Int. Ed. 56 15828–45

    [9] Gu D D, Meiners W, Wissenbach K and Poprawe R 2012 Laser additive manufacturing of metallic components: materials, processes and mechanisms Int. Mater. Rev. 57 133–64

    [10] Chimmalgi A, Grigoropoulos C P and Komvopoulos K 2005 Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy J. Appl. Phys. 97 104319

    [11] Meijer J 2004 Laser beam machining (LBM), state of the art and new opportunities J. Mater. Process. Technol. 149 2–17

    [12] Dubey A K and Yadava V 2008 Laser beam machining—A review Int. J. Mach. Tools Manuf. 48 609–28

    [13] Arrizubieta J I, Klocke F, Gr¨afe S, Arntz K and Lamikiz A 2015 Thermal simulation of laser-assisted turning Proced. Eng. 132 639–46

    [14] Dhakal B and Swaroop S 2018 Review: laser shock peening as post welding treatment technique J. Manuf. Process. 32 721–33

    [15] Gujba A K and Medraj M 2014 Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening Materials (Basel) 7 7925–74

    [16] Montross C S, Wei T, Ye L, Clark G and Mai Y W 2002 Laser shock processing and its effects on microstructure and properties of metal alloys: a review Int. J. Fatigue 24 1021–36

    [17] Zhang X C, Zhang Y K, Lu J Z, Xuan F Z, Wang Z D and Tu S T 2010 Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening Mater. Sci. Eng. A 527 3411–5

    [18] Hsiao F B, Jen C P, Wang D B, Chuang C H, Lee Y C, Liu C P and Hsu H J 2006 An analytical modeling of heat transfer for laser-assisted nanoimprinting processes Comput. Mech. 37 173–81

    [19] Ahmadi Z, Yakupoglu B, Azam N, Elafandi S and Mahjouri-Samani M 2019 Self-limiting laser crystallization and direct writing of 2D materials Int. J. Extrem. Manuf. 1 015001

    [20] Li L P, Lu Y F, Doerr D W, Alexander D R, Shi J and Li J C 2004 Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles Nanotechnology 15 333–6

    [21] Wu G Q, Hu Y Z, Zhu W N, Song C G and Han H S 2017 Research status and development trend of laser additive manufacturing technology Proc. 4th Int. Conf. on Information Science and Control Engineering (Changsha, China: IEEE) pp 1210–3

    [22] Melchels F P W, Domingos M A N, Klein T J, Malda J, Bartolo P J and Hutmacher D W 2012 Additive manufacturing of tissues and organs Prog. Polym. Sci. 37 1079–104

    [23] Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W and Bültmann J 2011 High power selective laser melting (HP SLM) of aluminum parts Phys. Procedia 12 271–8

    [24] Baufeld B, van der Biest O and Gault R 2010 Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties Mater. Des. 31 S106–11

    [25] Murr L E, Martinez E, Amato K N, Gaytan S M, Hernandez J, Ramirez D A, Shindo P W, Medina F and Wicker R B 2012 Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science J. Mater. Res. Technol. 1 42–54

    [26] Wang X W 2005 Large-scale molecular dynamics simulation of surface nanostructuring with a laser-assisted scanning tunnelling microscope J. Phys. D: Appl. Phys. 38 1805–23

    [27] Jersch J, Demming F and Dickmann K 1996 Nanostructuring with laser radiation in the nearfield of a tip from a scanning force microscope Appl. Phys. A 64 29–32

    [28] Xu S, Zhang L J, Yue Y N and Wang X W 2015 Physics in laser near-field nanomanufacturing: fundamental understanding and novel probing Encyclopedia of Nanotechnology ed B Bhushan (Dordrecht: Springer) pp 3195–213

    [29] Mai Z H, Lu Y F, Huang S M, Chim W K and Pan J S 2000 Mechanism of laser-induced nanomodification on hydrogen-passivated Si(100) surfaces underneath the tip of a scanning tunneling microscope J. Vac. Sci. Technol. B 18 1853–7

    [30] Mai Z H, Lu Y F, Song W D and Chim W K 2000 Nano-modification on hydrogen-passivated Si surfaces by a laser-assisted scanning tunneling microscope operating in air Appl. Surf. Sci. 154–5 360–4

    [31] Kim M M, Giry A, Mastiani M, Rodrigues G O, Reis A and Mandin P 2015 Microscale thermometry: a review Microelectron. Eng. 148 129–42

    [32] Hetsroni G, Mosyak A, Pogrebnyak E and Rozenblit R 2011 Infrared temperature measurements in micro-channels and micro-fluid systems Int. J. Therm. Sci. 50 853–68

    [33] Astarita T, Cardone G, Carlomagno G M and Meola C 2000 A survey on infrared thermography for convective heat transfer measurements Opt. Laser Technol. 32 593–610

    [34] Tian B, Zhang Z K, Shi P, Zheng C, Yu Q Y, Jing W X and Jiang Z D 2017 Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites Rev. Sci. Instrum. 88 015007

    [35] K?lbl N, Marschall I and Harmuth H 2019 High-temperature investigation of mould slag crystallization by single and double hot thermocouple techniques J. Iron Steel Res. Int. 26 345–54

    [36] Tougas M I, Amani M and Gregory O J 2013 Metallic and ceramic thin film thermocouples for gas turbine engines Sensors 13 15324–47

    [37] Sonibare O O, Haeger T and Foley S F 2010 Structural characterization of nigerian coals by X-ray diffraction, raman and FTIR spectroscopy Energy 35 5347–53

    [38] He X Q, Liu X F, Nie B S and Song D Z 2017 FTIR and Raman spectroscopy characterization of functional groups in various rank coals Fuel 206 555–63

    [39] Yue Y N and Wang X W 2012 Nanoscale thermal probing Nano Rev. 3 11586

    [40] Xu S, Wang T Y, Hurley D, Yue Y N and Wang X W 2015 Development of time-domain differential Raman for transient thermal probing of materials Opt. Express 23 10040–56

    [41] Serrano J R, Phinney L M and Kearney S P 2006 Micro-Raman thermometry of thermal flexure actuators J. Micromech. Microeng. 16 1128–34

    [42] Kittel C 2004 Introduction to Solid State Physics (New York: Wiley)

    [43] Attal-Tr′etout B, Bouchardy P, Magre P, P′ealat M and Taran J P 1990 CARS in combustion: prospects and problems Appl. Phys. B 51 17–24

    [44] Harris D C and Bertolucci M D 1978 Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Oxford: Oxford University Press)

    [45] Cialla-May D, Schmitt M and Popp J 2019 Theoretical principles of Raman spectroscopy Phys. Sci. Rev. 4 20170040

    [46] Das R S and Agrawal Y K 2011 Raman spectroscopy: recent advancements, techniques and applications Vib. Spectrosc. 57 163–76

    [47] Childs P R N, Greenwood J R and Long C A 2000 Review of temperature measurement Rev. Sci. Instrum. 71 2959–78

    [48] Xu Z W, He Z D, Song Y, Fu X, Rommel M, Luo X C, Hartmaier A, Zhang J J and Fang F Z 2018 Topic review: application of raman spectroscopy characterization in micro/nano-machining Micromachines 9 361

    [49] Yue Y N, Zhang J C and Wang X W 2011 Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC Small 7 3324–33

    [50] Wallis R F and Balkanski M 1986 Many-Body Aspects of Solid State Spectroscopy (Amsterdam: North-Holland)

    [51] Weber W H and Merlin R 2000 Raman Scattering in Materials Science (Berlin: Springer)

    [52] Hosoya N, Akaho Y, Inoue M, Sahoo S and Tachibana M 2014 Temperature dependence of the Raman spectra of polycrystalline graphene grown by chemical vapor deposition Appl. Phys. Lett. 105 023108

    [53] Huang X T, Gao Y, Yang T Q, Ren W C, Cheng H M and Lai T S 2016 Quantitative analysis of temperature dependence of Raman shift of monolayer WS2 Sci. Rep. 6 32236

    [54] Hart T R, Aggarwal R L and Lax B 1970 Temperature dependence of Raman scattering in silicon Phys. Rev. B 1 638–42

    [55] John N and George S 2017 Raman spectroscopy Spectroscopic Methods for Nanomaterials Characterization, ed S Thomas, R Thomas, A K Zachariah and R K Mishra (Amsterdam: Elsevier) pp 95–127

    [56] Sun H Y, Xu Z and Gao C 2013 Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels Adv. Mater. 25 2554–60

    [57] Tang X D, Xu S and Wang X W 2013 Thermal probing in single microparticle and microfiber induced near-field laser focusing Opt. Express 21 14303–15

    [58] Wang Z L and Tang D W 2013 Investigation of heat transfer around microwire in air environment using 3ω method Int. J. Therm. Sci. 64 145–51

    [59] Rumble J R 2019 CRC Handbook of Chemistry and Physics 100th edn (Boca Raton, FL: CRC Press)

    [60] Yuan P Y, Li C, Xu S, Liu J and Wang X W 2017 Interfacial thermal conductance between few to tens of layered-MoS2 and c-Si: effect of MoS2 thickness Acta Mater. 122 152–65

    [61] Yuan P Y, Liu J, Wang R D and Wang X W 2017 The hot carrier diffusion coefficient of sub-10 nm virgin MoS2: uncovered by non-contact optical probing Nanoscale 9 6808–20

    [62] Yuan P Y, Wang R D, Wang T Y, Wang X W and Xie Y S 2018 Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS2: 2.4 to 37.8 nm Phys. Chem. Chem. Phys. 20 25752–61

    [63] Tang X D, Xu S and Wang X W 2014 Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing Nanoscale 6 8822–30

    [64] van de Burgt Y 2014 Laser-assisted growth of carbon nanotubes—A review J. Laser Appl. 26 032001

    [65] Tofail S A M, Koumoulos E P, Bandyopadhyay A, Bose S, O’Donoghue L and Charitidis C 2018 Additive manufacturing: scientific and technological challenges, market uptake and opportunities Mater. Today 21 22–37

    [66] Tang X D, Xu S, Zhang J C and Wang X W 2014 Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces ACS Appl. Mater. Interfaces 6 2809–18

    [67] Zhou H Q, Qiu C Y, Yu F, Yang H C, Chen M J, Hu L J, Guo Y J and Sun L F 2011 Raman scattering of monolayer graphene: the temperature and oxygen doping effects J. Phys. D: Appl. Phys. 44 185404

    [68] Zhang L, Jia Z, Huang L M, O’Brien S and Yu Z H 2008 Low-temperature raman spectroscopy of individual single-wall carbon nanotubes and single-layer graphene J. Phys. Chem. C 112 13893–900

    [69] Allen M J, Fowler J D, Tung V C, Yang Y, Weiller B H and Kaner R B 2008 Temperature dependent Raman spectroscopy of chemically derived graphene Appl. Phys. Lett. 93 193119

    [70] Calizo I, Balandin A A, Bao W, Miao F and Lau C N 2007 Temperature dependence of the raman spectra of graphene and graphene multilayers Nano Lett. 7 2645–9

    [71] Balandin A A 2011 Thermal properties of graphene and nanostructured carbon materials Nat. Mater. 10 569–81

    [72] Zhao W Q, Chen W, Yue Y N and Wu S J 2017 In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material Appl. Therm. Eng. 113 481–9

    [73] Wang W H, Peng Q, Dai Y Q, Qian Z F and Liu S 2016 Temperature dependence of Raman spectra of graphene on copper foil substrate J. Mater. Sci. Mater. Electron. 27 3888–93

    [74] Malard L M, Nilsson J, Mafra D L, Elias D C, Brant J C, Plentz F, Alves E S, Neto A H C and Pimenta M A 2008 Electronic properties of bilayer graphene probed by resonance Raman scattering Phys. Status Solidi b 245 2060–3

    [75] Yue Y N, Chen X W and Wang X W 2011 Noncontact sub-10 nm temperature measurement in near-field laser heating ACS Nano 5 4466–75

    [76] Chen X W and Wang X W 2011 Near-field thermal transport in a nanotip under laser irradiation Nanotechnology 22 075204

    [77] Chen X W and Wang X W 2011 Microscale spatially resolved thermal response of Si nanotip to laser irradiation J. Phys. Chem. C 115 22207–16

    [78] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H and Lukin M D 2013 Nanometre-scale thermometry in a living cell Nature 500 54–58

    [79] Li C Z and Yue Y N 2014 Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths Nanotechnology 25 435703

    [80] Neumann P et al 2013 High-precision nanoscale temperature sensing using single defects in diamond Nano Lett. 13 2738–42

    [81] Tang X D, Xu S and Wang X W 2013 Nanoscale probing of thermal, stress, and optical fields under near-field Laser heating PLoS One 8 e58030

    [82] Wang R D, Yuan P Y, Han M, Xu S, Wang T Y and Wang X W 2017 Asymmetry of Raman scattering by structure variation in space Opt. Express 25 18378–92

    [83] Schmidt A J 2013 Pump-probe thermoreflectance Annu. Rev. Heat Transf. 16 159–81

    [84] Yuan P Y, Wang R D, Tan H, Wang T Y and Wang X W 2017 Energy transport state resolved raman for probing interface energy transport and hot carrier diffusion in few-layered MoS2 ACS Photonics 4 3115–29

    [85] Wang R D, Wang T Y, Zobeiri H, Yuan P Y, Deng C, Yue Y N, Xu S and Wang X W 2018 Measurement of the thermal conductivities of suspended MoS2 and MoSe2 by nanosecond ET-Raman without temperature calibration and laser absorption evaluation Nanoscale 10 23087–102

    [86] Zobeiri H, Wang R D, Zhang Q Y, Zhu G J and Wang X W 2019 Hot carrier transfer and phonon transport in suspended nm WS2 films Acta Mater. 175 222–37

    [87] Souther N, Wagner R, Harnish P, Briel M and Bali S 2010 Measurements of light shifts in cold atoms using Raman pump-probe spectroscopy Laser Phys. Lett. 7 321–7

    [88] Dang N C, Bolme C A, Moore D S and McGrane S D 2011 Femtosecond stimulated raman scattering picosecond molecular thermometry in condensed phases Phys. Rev. Lett. 107 043001

    [89] Müller M and Zumbusch A 2007 Coherent anti-Stokes Raman scattering microscopy ChemPhysChem 8 2156–70

    [90] Krafft C, Dietzek B and Raman P J 2009 CARSmicrospectroscopy of cells and tissues Analyst 134 1046–57

    [91] Tu H H and Boppart S A 2014 Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation J. Biophoton. 7 9–22

    [92] Lei T C, Ammar D A, Masihzadeh O, Gibson E A and Kahook M Y 2011 Label-free imaging of trabecular meshwork cells using coherent anti-Stokes Raman scattering (CARS) microscopy Mol. Vis. 17 2628–33

    [93] Dennis C N, Satija A and Lucht R P 2016 High dynamic range thermometry at 5 kHz in hydrogen–air diffusion flame using chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering J. Raman Spectrosc. 47 177–88

    Ridong Wang, Shen Xu, Yanan Yue, Xinwei Wang. Thermal behavior of materials in laser-assisted extreme manufacturing: Raman-based novel characterization[J]. International Journal of Extreme Manufacturing, 2020, 2(3): 32004
    Download Citation