• Chinese Journal of Lasers
  • Vol. 50, Issue 20, 2002106 (2023)
Zhaoyang Li1、2, Zhongliang Li2、3、*, Nan Nan2、**, Teng Liu2、3, Chenming Yang2、3, Xinjun Wan1, Yiheng Zhang2、3, and Xiangzhao Wang2、3
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL230449 Cite this Article Set citation alerts
    Zhaoyang Li, Zhongliang Li, Nan Nan, Teng Liu, Chenming Yang, Xinjun Wan, Yiheng Zhang, Xiangzhao Wang. Measurement Method of Keyhole Depth in Laser Welding Based on Polarization Sensitive OCT[J]. Chinese Journal of Lasers, 2023, 50(20): 2002106 Copy Citation Text show less
    References

    [1] Acherjee B. Hybrid laser arc welding: state-of-art review[J]. Optics & Laser Technology, 99, 60-71(2018).

    [2] Li L H, Deng S. Laser welding technology of power battery shell[J]. Welding Technology, 42, 30-32(2013).

    [3] Bautze T, Kogel-Hollacher M. Keyhole Depth is just a Distance[J]. Laser Technik Journal, 11, 39-43(2014).

    [4] Sreedhar U, Krishnamurthy C V, Balasubramaniam K et al. Automatic defect identification using thermal image analysis for online weld quality monitoring[J]. Journal of Materials Processing Technology, 212, 1557-1566(2012).

    [5] Stritt P, Weber R, Graf T et al. Utilizing laser power modulation to investigate the transition from heat-conduction to deep-penetration welding[J]. Physics Procedia, 12, 224-231(2011).

    [6] Wei M X, Wu G H, Wang J T et al. Research status of laser weld nondestructive testing technology[J]. Nondestructive Testing Technology, 46, 25-30(2022).

    [7] Deyneka Dupriez N, Denkl A. Advances of OCT Technology for Laser Beam Processing: precision and quality during laser welding[J]. Laser Technik Journal, 14, 34-38(2017).

    [8] Stadter C, Schmoeller M, Zeitler M et al. Process control and quality assurance in remote laser beam welding by optical coherence tomography[J]. Journal of Laser Applications, 31, 022408(2019).

    [9] Hariri L P, Mino-Kenudson M, Mark E J et al. In vivo optical coherence tomography: the role of the pathologist[J]. Archives of Pathology & Laboratory Medicine, 136, 1492-1501(2012).

    [10] Cho J H, Na S J. Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole[J]. Journal of Physics D: Applied Physics, 39, 5372-5378(2006).

    [11] Volpp J. Formation mechanisms of pores and spatters during laser deep penetration welding[J]. Journal of Laser Applications, 30, 012002(2018).

    [12] Schmoeller M, Stadter C, Liebl S et al. Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography[J]. Journal of Laser Applications, 31, 022409(2019).

    [13] Boley M, Abt F, Weber R et al. X-ray and optical videography for 3D Measurement of capillary and melt pool geometry in laser welding[J]. Physics Procedia, 41, 88-95(2013).

    [14] Fetzer F, Boley M, Weber R et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography[J]. Optics and Lasers in Engineering, 119, 56-64(2019).

    [15] Mittelstädt C, Mattulat T, Seefeld T et al. Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel[J]. Journal of Laser Applications, 31, 022007(2019).

    [16] Yin D X, Cao X Y. Application of optical coherence tomography in on-line detection of laser welding penetration[J]. Welding Technology, 47, 87-89(2018).

    [17] Yang Y Y, Cui Z Z, Wang L et al. Reflective laser polarization characteristics of metal target surface in the short-range detection[J]. Science & Technology Review, 31, 28-32(2013).

    [18] Walther J, Golde J, Kirsten L et al. In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 22, 121717(2017).

    [19] Du J, Wei Z Y. Numerical investigation of thermocapillary-induced deposited shape in fused-coating additive manufacturing process of aluminum alloy[J]. Journal of Physics Communications, 2, 115013(2018).

    [20] Schmoeller M, Neureiter M, Stadter C et al. Numerical weld pool simulation for the accuracy improvement of inline weld depth measurement based on optical coherence tomography[J]. Journal of Laser Applications, 32, 022036(2020).

    [21] Liu P, Huang L J, Gan L et al. Effect of plate thickness on weld pool dynamics and keyhole-induced porosity formation in laser welding of Al alloy[J]. The International Journal of Advanced Manufacturing Technology, 111, 735-747(2020).

    [22] Sokolov M, Franciosa P, Al Botros R et al. Keyhole mapping to enable closed-loop weld penetration depth control for remote laser welding of aluminum components using optical coherence tomography[J]. Journal of Laser Applications, 32, 032004(2020).

    Zhaoyang Li, Zhongliang Li, Nan Nan, Teng Liu, Chenming Yang, Xinjun Wan, Yiheng Zhang, Xiangzhao Wang. Measurement Method of Keyhole Depth in Laser Welding Based on Polarization Sensitive OCT[J]. Chinese Journal of Lasers, 2023, 50(20): 2002106
    Download Citation