• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 4, 325 (2009)
LIN Z. LI1、2、*, HE N. XU1, MAHSA RANJI3, SHOKO NIOKA4, and BRITTON CHANCE4
Author Affiliations
  • 1Department of Radiology, School of Medicine University of Pennsylvania, B6 Blockley Hall, 423 Guardian Drive Philadelphia, PA 19104-6069, USA
  • 2The Institute for Translational Medicine and Therapeutics School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
  • 3Biophotonics Laboratory Department of Electrical Engineering and Computer Science University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
  • 4Johnson Research Foundation Department of Biochemistry and Molecular Biophysics School of Medicine, University of Pennsylvania 250 Anatomy Chemistry Building, Philadelphia, PA 19104, USA
  • show less
    DOI: Cite this Article
    LIN Z. LI, HE N. XU, MAHSA RANJI, SHOKO NIOKA, BRITTON CHANCE. MITOCHONDRIAL REDOX IMAGING FOR CANCER DIAGNOSTIC AND THERAPEUTIC STUDIES[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 325 Copy Citation Text show less
    References

    [1] A. L. Lehninger, D. L. Nelson, M. M. Cox, Principles of Biochemistry, Worth Publishers, New York (1993).

    [2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, Garland Science, New York (2002).

    [3] C. D. Berdanier, Mitochondria in Health and Disease, Taylor & Francis, New York (2005).

    [4] J. S. Modica-Napolitano, M. Kulawiec, K. K. Singh, “Mitochondria and human cancer,” Curr. Mol. Med. 7, 121–131 (2007).

    [5] H. K. Lee, “Mitochondria in diabetes mellitus,” in Mitochondria in Health and Disease, C. D. Berdanier, Eds., pp. 377–454, Taylor & Francis, New York (2005).

    [6] R. S. Balaban, S. Nemoto, T. Finkel, “Mitochondria, oxidants, and aging,” Cell 120, 483–495 (2005).

    [7] D. C. Wallace, “Mitochondrial diseases in man and mouse,” Science 283, 1482–1488 (1999).

    [8] S. Grandemange, S. Herzig, J. C. Martinou, “Mitochondrial dynamics and cancer,” Semin. Cancer Biol. 19, 50–56 (2009).

    [9] C. Frezza, E. Gottlieb, “Mitochondria in cancer: Not just innocent bystanders,” Semin. Cancer Biol. 19, 4–11 (2009).

    [10] A. K. Holley, D. K. St Clair, “Watching the watcher: Regulation of p53 by mitochondria,” Future Oncol. 5, 117–130 (2009).

    [11] D. A. Tennant, R. V. Duran, H. Boulahbel, E. Gottlieb, “Metabolic transformation in cancer,” Carcinogenesis 30, 1269–1280 (2009).

    [12] F. Koch-Nolte, F. Haag, A. H. Guse, F. Lund, M. Ziegler, “Emerging roles of NAD+ and its metabolites in cell signaling,” Sci. Signal. 2, mr1 (2009).

    [13] R. Banerjee, Redox Biochemistry, John Wiley & Sons, Hoboken, New Jersey (2008).

    [14] B. Chance, G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. 4. The respiratory chain,” J. Biol. Chem. 217, 429–438 (1955).

    [15] B. Chance, G. R. Williams, “A method for the localization of sites for oxidative phosphorylation,” Nature 176, 250–254 (1955).

    [16] B. Chance, H. Baltscheffsky, “Respiratory enzymes in oxidative phosphorylation. 7. Binding of intramitochondrial reduced pyridine nucleotide,” J. Biol. Chem. 233, 736–739 (1958).

    [17] B. Chance, “Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria,” Circ. Res. 38, I31–38 (1976).

    [18] B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Intracellular oxidation-reduction states in vivo,” Science 137, 499–508 (1962).

    [19] B. Chance, “Spectrophotometric and kinetic studies of flavoproteins in tissues, cell suspensions, mitochondria and their fragments,” in Flavins and Flavoproteins, E. C. Slater, Ed., pp. 498–510, Elsevier, Amsterdam (1966).

    [20] B. Chance, P. Cohen, F. Jobsis, B. Schoener, “Localized fluorometry of oxidation-reduction states of intracellular pyridine nucleotide in brain and kidney cortex of the anesthetized rat,” Science 136, 325 (1962).

    [21] I. Hassinen, B. Chance, “Oxidation-reduction properties of the mitochondrial flavoprotein chain,” Biochem. Biophys. Res. Commun. 31, 895–900 (1968).

    [22] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254, 4764–4771 (1979).

    [23] B. Chance, N. Oshino, T. Sugano, A. Mayevsky, “Basic principles of tissue oxygen determination from mitochondrial signals,” Adv. Exp. Med. Biol. 37A, 277–292 (1973).

    [24] B. Chance, “Optical method,” Ann. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).

    [25] B. Quistorff, J. C. Haselgrove, B. Chance, “High resolution readout of 3-D metabolic organ structure: An automated, low-temperature redox ratioscanning instrument,” Anal. Biochem. 148, 389–400 (1985).

    [26] Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, B. Chance, “High-resolution threedimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue,” Rev. Sci. Instrum. 73, 172–178 (2002).

    [27] B. Chance, B. Schoener, “Fluorometric studies of flavin component of the respiratory chain,” in Flavins and Flavoproteins, E. C. Slater, Ed., pp. 510–519, Elsevier, Amsterdam (1966).

    [28] L. Z. Li, R. Zhou, H. N. Xu, L. Moon, T. X. Zhong, E. J. Kim, H. Qiao, R. Reddy, D. Leeper, B. Chance, J. D. Glickson, “Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential,” Proc. Nat. Acad. Sci. U.S.A. 106, 6608–6613 (2009).

    [29] R. L. Veech, “The determination of the redox states and phosphorylation potential in living tissues and their relationship to metabolic control of disease phenotypes,” Biochem. Mol. Biol. Educ. 34, 168– 179 (2006).

    [30] K. Ozawa, B. Chance, A. Tanaka, S. Iwata, T. Kitai, I. Ikai, “Linear correlation between acetoacetate beta-hydroxybutyrate in arterial blood and oxidized flavoprotein reduced pyridine-nucleotide in freeze-trapped human liver-tissue,” Biochimica Et Biophysica Acta 1138, 350–352 (1992).

    [31] P. C. Nowell, “Clonal evolution of tumor-cell populations,” Science 194, 23–28 (1976).

    [32] I. J. Fidler, M. L. Kripke, “Metastasis results from preexisting variant cells within a malignant-tumor,” Science 197, 893–895 (1977).

    [33] I. J. Fidler, I. R. Hart, “Biological diversity in metastatic neoplasms — origins and implications,” Science 217, 998–1003 (1982).

    [34] L. Z. Li, R. Zhou, T. Zhong, L. Moon, E. J. Kim, H. Qiao, S. Pickup, M. J. Hendrix, D. Leeper, B. Chance, J. D. Glickson, “Predicting melanoma metastatic potential by optical and magnetic resonance imaging,” Adv. Exp. Med. Biol. 599, 67–78 (2007).

    [35] H. N. Xu, R. Zhou, S. Nioka, B. Chance, J. D. Glickson, L. Z. Li, “Histological basis of MR/optical imaging of human melanoma mouse xenografts spanning a range of metastatic potentials,” Adv. Exp. Med. Biol. 645, 247–253 (2009).

    [36] E. M. C. Hillman, “Optical brain imaging in vivo: Techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).

    [37] A. Mayevsky, B. Chance, “Oxidation-reduction states of NADH in vivo: From animals to clinical use,” Mitochondrion 7, 330–339 (2007).

    [38] K. Shibuki, R. Hishida, H. Murakami, M. Kudoh, T. Kawaguchi, M. Watanabe, S. Watanabe, T. Kouuchi, R. Tanaka, “Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence,” J. Physiol. Lond. 549: 919–927 (2003).

    [39] B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004).

    [40] Y. Yuan, Y. F. Li, B. D. Cameron, P. Relue, “Fluorescence anisotropy of cellular NADH as a tool to study different metabolic properties of human melanocytes and melanoma cells,” IEEE J. Sel. Top Quant. Electron. 13, 1671–1679 (2007).

    [41] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, “Calibration of redox scanning for tissue samples,” in Optical Tomography and Spectroscopy of Tissue VIII, 71742F-8, SPIE, San Jose, CA, USA, (2009).

    [42] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, “Calibration of CCD-based redox imaging for biological tissues,” in Medical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging, 72622F-7, SPIE, Lake Buena Vista, FL, USA, (2009).

    [43] A. K. Ghosh, D. Finegold, W. White, K. Zawalich, F. M. Matschinsky, “Quantitative histochemical resolution of the oxidation-reduction and phosphate potentials within the simple hepatic acinus,” J. Biol. Chem. 257, 5476–5481 (1982).

    [44] M. Ranji, S. Nioka, H. N. Xu, B. Wu, L. Z. Li, D. L. Jaggard, B. Chance, “Fluorescent images of mitochondrial redox states in in situ mouse hypoxic ischemic intestines,” J. Innov. Opt. Health Sci. 2(4), 365–374 (2009).

    [45] A. Mayevsky, G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: From animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615–640 (2007).

    [46] A. Mayevsky, “Shedding light on life: Optical assessment of mitochondrial function and tissue vitality in biology and medicine,” J. Innov. Opt. Health Sci. 1, 71–83 (2008).

    [47] K. C. Reinert, R. L. Dunbar, W. Gao, G. Chen, T. J. Ebner, “Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo,” J. Neurophysiol. 92, 199–211 (2004).

    [48] S. Zhuo, J. Chen, T. Luo, X. Jiang, S. Xie, R. Chen, “Two-layered multiphoton microscopic imaging of cervical tissue,” Lasers Med. Sci. 24, 359–363 (2009).

    [49] L. M. Tiede, S. M. Rocha-Sanchez, R. Hallworth, M. G. Nichols, K. Beisel, “Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy,” J. Biomed. Opt. 12, 021004 (2007).

    [50] M. C. Skala, K.M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff,K.W. Eliceiri, J. G. White, N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104, 19494–19499 (2007).

    [51] S. Zhuo, J. Chen, N. Cao, X. Jiang, S. Xie, S. Xiong, “Imaging collagen remodeling and sensing transplanted autologous fibroblast metabolism in mouse dermis using multimode nonlinear optical imaging,” Phys. Med. Biol. 53, 3317–3325 (2008).

    [52] J. G. Lyubovitsky, J. A. Spencer, T. B. Krasieva, B. Andersen, B. J. Tromberg, “Imaging corneal pathology in a transgenic mouse model using nonlinear microscopy,” J. Biomed. Opt. 11, 014013 (2006).

    [53] Z. H. Zhang, H. Li, Q. Liu, L. L. Zhou, M. Zhang, Q. M. Luo, J. Glickson, B. Chance, G. Zheng, “Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers,” Biosens. Bioelectr. 20, 643–650 (2004).

    [54] D. R. Welch, J. E. Bisi, B. E. Miller, D. Conaway, E. A. Seftor, K. H. Yohem, L. B. Gilmore, R. E. Seftor, M. Nakajima, M. J. Hendrix, “Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line,” Int. J. Cancer 47, 227–237 (1991).

    [55] J. M. Kozlowski, I. R. Hart, I. J. Fidler, N. Hanna, “A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice,” J. Nat. Cancer Inst. 72, 913–917 (1984).

    [56] N. Ramanujam, R. Richards-Kortum, S. Thomsen, A. Mahadevan-Jansen, M. Follen, B. Chance, “Low temperature fluorescence imaging of freeze-trapped human cervical tissues,” Opt. Express 8, 335–343 (2001).

    [57] Z. Zhang, D. Blessington, H. Li, T. M. Busch, J. Glickson, Q. Luo, B. Chance, G. Zheng, “Redox ratio of mitochondria as an indicator for the response of photodynamic therapy,” J. Biomed. Opt. 9, 772–778 (2004).

    [58] C. H. Contag, “In vivo pathology: Seeing with molecular specificity and cellular resolution in the living body,” Ann. Rev. Pathol. 2, 277–305 (2007).

    [59] R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, F. S. Pavone, “Multidimensional custom-made non-linear microscope: From ex-vivo to in-vivo imaging,” Appl. Phys. B Lasers Opt. 92, 359–365 (2008).

    [60] K. Konig, A. Ehlers, I. Riemann, S. Schenkl, R. Buckle, M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70, 398–402 (2007).

    [61] H. C. Bao, J. Allen, R. Pattie, R. Vance, M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 microm × 475 microm field of view for in vivo imaging,” Opt. Lett. 33, 1333–1335 (2008).

    [62] C. T. Dooley, T. M. Dore, G. T. Hanson, W. C. Jackson, S. J. Remington, R. Y. Tsien, “Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators,” J. Biol. Chem. 279, 22284–22293 (2004).

    [63] J. V. Rocheleau, W. S. Head, D. W. Piston, “Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response,” J. Biol. Chem. 279, 31780–31787 (2004).

    [64] M. G. Nichols, E. E. Barth, J. A. Nichols, “Reduction in DNA synthesis during two-photon microscopy of intrinsic reduced nicotinamide adenine Dinucleotide Fluorescence,” Photochem. Photobiol. 81, 259–269 (2005).

    [65] B. Zelent, T. Troxler, J. M. Vanderkooi, “Temperature dependence for fluorescence of β-NADH in glycerol/ water solution and in trehalose/sucrose glass,” J. Fluorescence 17, 37–42 (2007).

    [66] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, “Quantitative redox scanning of tissue samples using a calibration procedure,” J. Innov. Opt. Health Sci. 2, 375–385 (2009).

    LIN Z. LI, HE N. XU, MAHSA RANJI, SHOKO NIOKA, BRITTON CHANCE. MITOCHONDRIAL REDOX IMAGING FOR CANCER DIAGNOSTIC AND THERAPEUTIC STUDIES[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 325
    Download Citation