• Opto-Electronic Engineering
  • Vol. 44, Issue 2, 172 (2017)
Rui Zhou1、* and Fengping Li2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.02.005.1 Cite this Article
    Rui Zhou, Fengping Li. Synthesis of nanoparticles by short pulsed laser ablation and its applications in nonlinear optics[J]. Opto-Electronic Engineering, 2017, 44(2): 172 Copy Citation Text show less
    References

    [1] Zhou Y, Chen L W, Du Z R, et al. Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix[J]. Optical Materials Express, 2015, 5(7): 1606–1612.

    [2] Du Zheren, Chen Lianwei, Kao TsungSheng, et al. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement[J]. Beilstein Journal of Nanotechnology, 2015, 6: 1199–1204.

    [3] Muller O, Dengler S, Ritt G, et al. Size and shape effects on the nonlinear optical behavior of silver nanoparticles for power limiters[J]. Applied Optics, 2013, 52(2): 139–149.

    [4] Ahmed M A, El-Katori E E, Gharni Z H. Photocatalytic deg-radation of methylene blue dye using Fe2O3/TiO2 nanoparti-cles prepared by sol-gel method[J]. Journal of Alloys and Compounds, 2013, 553: 19–29.

    [5] Eremin A V. Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes[J]. Progress in Energy and Combustion Science, 2012, 38(1): 1–40.

    [6] Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram- negative bacteria[J]. Nanomedicine: Nanotechnology, Biol-ogy and Medicine, 2012, 8(1): 37–45.

    [7] Wu Sihan, Mou Chungyuan, Lin Hongping. Synthesis of mesoporous silica nanoparticles[J]. Chemical Society Reviews, 2013, 42(9): 3862–3875.

    [8] Rhim J W, Wang Longfeng, Lee Y, et al. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method[J]. Carbohydrate Pol-ymers, 2014, 103: 456–465.

    [9] Link S, Burda C, Mohamed M B, et al. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence[J]. The Journal of Physical Chem-istry A, 1999, 103(9): 1165–1170.

    [10] Gleiter H, Marquardt P. Nanocrystalline structures-an ap-proach to new materials [J]. Zeitschrift Fuer Metallkunde, 1984, 75(4): 263–267.

    [11] Suresh R, Ponnuswamy V, Mariappan R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method[J]. Applied Surface Science, 2013, 273: 457–464.

    [12] Long L Q, Hue T T B, Hoan N X, et al. Growth Mechanism and Stability of Magnetite Nanoparticles Synthesized by the Hy-drothermal Method[J]. Journal of Nanoscience and Nano-technology, 2016, 16(7): 7373–7379.

    [13] Wu Junchi, Shi Wenwu, Chopra Nitin. Plasma oxidation kinetics of gold nanoparticles and their encapsulation in graphene shells by chemical vapor deposition growth[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12861–12874.

    [14] Araújo V D, Avansi W, De Carvalho H B, et al. CeO2 nano-particles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods[J]. CrystEngComm, 2012, 14(3): 1150–1154.

    [15] Zamiri R, Zakaria A, Ahangar H A, et al. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser abla-tion[J]. Journal of Alloys and Compounds, 2012, 516: 41–48.

    [16] Carneiro J O, Azevedo S, Fernandes F, et al. Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the in-fluence of process parameters on the structural, optical, magnetic, and photocatalytic properties[J]. Journal of Mate-rials Science, 2014, 49(21): 7476–7488.

    [17] Uda M, Okuyama H, Suzuki T S, et al. Hydrogen generation from water using Mg nanopowder produced by arc plasma method[J]. Science and Technology of Advanced Materials, 2016, 13(2): 025009.

    [18] Fujimoto T, Ogawa S, Kanai T, et al. Hydrogen storage property of materials composed of Mg nanoparticles and Ni nanoparticles fabricated by gas evaporation method[J]. In-ternational Journal of Hydrogen Energy, 2015, 40(35): 11890–11894.

    [19] Akbari M K, Derakhshan R, Mirzaee O. A case study in vapor phase synthesis of Mg-Al alloy nanoparticles by plasma arc evaporation technique[J]. Chemical Engineering Journal, 2015, 259: 918–926.

    [20] Wagener P, Ibrahimkutty S, Menzel A, et al. Dynamics of silver nanoparticle formation and agglomeration inside the cavita-tion bubble after pulsed laser ablation in liquid[J]. Physical Chemistry Chemical Physics, 2013, 15(9): 3068–3074.

    [21] Li Lin, Hong Minghui, Schmidt M, et al. Laser nano-manufacturing-state of the art and challenges[J]. CIRP Annals-Manufacturing Technology, 2011, 60(2): 735–755.

    [22] Procházka M, Mojze P, tpánek J, et al. Probing applica-tions of laser-ablated Ag colloids in SERS spectroscopy: im-provement of ablation procedure and SERS spectral test-ing[J]. Analytical Chemistry, 1997, 69(24): 5103–5108.

    [23] Bae C H, Nam S H, Park S M. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution[J]. Applied Surface Science, 2002, 197-198: 628–634.

    [24] Chen G X, Hong M H, Tan L S, et al. Optical limiting phe-nomena of carbon nanoparticles prepared by laser ablation in liquids[J]. Journal of Physics: Conference Series, 2007, 59(1): 289–292.

    [25] Henglein A. Physicochemical properties of small metal parti-cles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition[J]. The Journal of Physical Chemistry, 1993, 97(21): 5457–5471.

    [26] Fojtik A, Henglein A. Laser ablation of films and suspended particles in a solvent: formation of cluster and colloid solu-tions[J]. Berichte der Bunsen-Gesellschaft, Physical Chem-istry, Chemical Physics, 1993, 97(2): 252–254.

    [27] Tsuji T, Iryo K, Watanabe N, et al. Preparation of silver na-noparticles by laser ablation in solution: influence of laser wavelength on particle size[J]. Applied Surface Science, 2002, 202(1-2): 80–85.

    [28] Tsuji T, Iryo K, Ohta H, et al. Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the efficiencies of colloid formation[J]. Japa-nese Journal of Applied Physics, 2000, 39(10A): L981–L983.

    [29] Tsuji T, Iryo K, Nishimura Y, et al. Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency(II)[J]. Journal of Pho-tochemistry and Photobiology A: Chemistry, 2001, 145(3): 201–207.

    [30] Barcikowski S, Hahn A, Kabashin A V, et al. Properties of nanoparticles generated during femtosecond laser machining in air and water[J]. Applied Physics A, 2007, 87(1): 47–55.

    [31] Sajti C L, Sattari R, Chichkov B N, et al. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid[J]. The Journal of Physical Chemistry C, 2010, 114(6): 2421–2427.

    [32] Khan S Z, Yuan Yudie, Abdolvand A, et al. Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid[J]. Journal of Nanoparticle Re-search, 2009, 11(6): 1421–1427.

    [33] Khan S Z, Liu Z, Li L. Characteristics of γ-Al2O3 nanoparticles generated by continuous-wave laser ablation in liquid[J]. Applied Physics A, 2010, 101(4): 781–787.

    [34] Abdolvand A, Khan S Z, Yuan Y, et al. Generation of tita-nium-oxide nanoparticles in liquid using a high-power, high- brightness continuous-wave fiber laser[J]. Applied Physics A, 2008, 91(3): 365–368.

    [35] Hahn A, Barcikowski S, Chichkov B N. Influences on nano-particle production during pulsed laser ablation[J]. Journal of Laser Micro/Nanoengineering, 2008, 3(2): 73–77.

    [36] Liu C H, Hong M H, Zhou Y, et al. Synthesis and character-ization of Ag deposited TiO2 particles by laser ablation in water[J]. Physica Scripta, 2007, 129: 326–328.

    [37] Link S, Burda C, Nikoobakht B, et al. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses[J]. The Journal of Physical Chem-istry B, 2000, 104(26): 6152–6163.

    [38] Zhang Hongwei, Peng Xing, Sun Lin, et al. CdSe nanopar-ticles with clean surfaces: gas phase synthesis and optical properties[C]. 2015 3rd Asia Conference on Mechanical and Materials Engineering, 2015, 26: 01006.

    [39] Nol S, Hermann J, Itina T. Investigation of nanoparticle generation during femtosecond laser ablation of metals[J]. Applied Surface Science, 2007, 253(15): 6310–6315.

    [40] Nol S, Hermann J. Influence of irradiation conditions on plume expansion induced by femtosecond laser ablation of gold and copper[J]. Proceedings of SPIE, 2007, 6785: 67850F.

    [41] Amoruso S, Bruzzese R, Spinelli N, et al. Generation of silicon nanoparticles via femtosecond laser ablation in vacuum[J]. Applied Physics Letters, 2004, 84(22): 4502–4504.

    [42] Lam H M, Hong M H, Yuan S, et al. Growth of β-Ga2O3 na-noparticles by pulsed laser ablation technique[J]. Applied Physics A, 2004, 79(8): 2099–2102.

    [43] Scaramuzza S, Agnoli S, Amendola V. Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: influence of the chemical environment on structure and composition[J]. Physical Chemistry Chemical Physics, 2015, 17(42): 28076–28087.

    [44] Semaltianos N G. Nanoparticles by Laser Ablation of Bulk Target Materials in Liquids[M]//Aliofkhazraei M, ed. Handbook of Nanoparticles. Switzerland: Springer International Pub-lishing, 2016: 67–92.

    [45] Zhao Chongjun, Qu Shiliang, Qiu Jianrong, et al. Photoin-duced formation of colloidal Au by a near-infrared femto-second laser [J]. Journal of Materials Research, 2003, 18(7): 1710–1714.

    [46] Zhao Chongjun, Qu Shiliang, Qiu Jianrong, et al. Preparation of colloidal Au by a femtosecond laser[J]. Chemistry Letters, 2003, 32(7): 602–603.

    [47] Kabashin A V, Meunier M, Kingston C, et al. Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins[J]. The Journal of Physical Chemistry B, 2003, 107(19): 4527–4531.

    [48] Chen Lianwei, Jiang Xiaofang, Guo Ziming, et al. Tuning optical nonlinearity of laser-ablation-synthesized silicon na-noparticles via doping concentration[J]. Journal of Nano-materials, 2014, 2014: 652829.

    [49] Chen G X, Hong M H, Ong T S, et al. Carbon nanoparticles based nonlinear optical liquid[J]. Carbon, 2004, 42(12-13): 2735–2737.

    [50] Xu Kaichen, Zhang Chentao, Zhou Rui, et al. Hybrid mi-cro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering[J]. Optics Express, 2016, 24(10): 10352–10358.

    [51] Zeng Huidan, Zhao Chongjun, Qiu Jianrong, et al. Prepara-tion and optical properties of silver nanoparticles induced by a femtosecond laser irradiation[J]. Journal of Crystal Growth, 2007, 300(2): 519–522.

    [52] Fan Guanghua, Qu Shiliang, Wang Qiang, et al. Pd nano-particles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses[J]. Journal of Applied Physics, 2011, 109(2): 023102.

    [53] Wang Fei, Yu Hong, Wang Xincai, et al. Maskless fabrication of large scale Si nanohole array via laser annealed metal na-noparticles catalytic etching for photovoltaic application[J]. Journal of Applied Physics, 2010, 108(2): 024301.

    [54] Ganeev R A, Baba M, Ryasnyansky A I, et al. Characterization of optical and nonlinear optical properties of silver nanopar-ticles prepared by laser ablation in various liquids[J]. Optics Communications, 2004, 240(4-6): 437–448.

    [55] Gao Yachen, Chang Qing, Ye Hongan, et al. Size effect of optical limiting in gold nanoparticles[J]. Chemical Physics, 2007, 336(2-3): 99–102.

    [56] Novak J P, Brousseau L C, Vance F W, et al. Nonlinear optical properties of molecularly bridged gold nanoparticle arrays[J]. Journal of the American Chemical Society, 2000, 122(48): 12029–12030.

    [57] Danckwerts M, Novotny L. Optical frequency mixing at cou-pled gold nanoparticles[J]. Physical Review Letters, 2007, 98(2): 026104.

    [58] Zhou Q F, Zhang Q Q, Zhang J X, et al. Preparation and optical properties of TiO2 nanocrystalline particles dispersed in SiO2 nano-composites[J]. Materials Letters, 1997, 31(1-2): 39–42.

    [59] Wang Shixing, Wang Mingtai, Lei Yong, et al. “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites[J]. Journal of Materials Science Letters, 1999, 18(24): 2009–2012.

    [60] Elim H I, Ji W, Yuwono A H, et al. Ultrafast optical nonlinearity in PMMA-TiO2 nanocomposites[J]. Applied Physics Letters, 2003, 82(16): 2691–2693.

    [61] Litty I, Nampoori V P N, Radhakrishnan P, et al. Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO[J]. Journal of Applied Physics, 2008, 103(3): 033105.

    [62] Zhang X J, Ji W, Tang S H. Determination of optical nonlin-earities and carrier lifetime in ZnO[J]. Journal of the Optical Society of America B-Optical Physics, 1997, 14(8): 1951–1955.

    [63] Chen G X, Hong M H. Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles[J]. Applied Physics A, 2010, 101(3): 467–470.

    [64] Chen G X, Hong M H, Chong T C, et al. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water[J]. Journal of Applied Physics, 2004, 95(3): 1455–1459.

    [65] Hollins R C. Materials for optical limiters[J]. Current Opinion in Solid State and Materials Science, 1999, 4(2): 189–196.

    [66] Qian Jun, Wang Dan, Cai Fuhong, et al. Observation of multiphoton-induced fluorescence from graphene oxide na-noparticles and applications in in vivo functional bioimaging[J]. Angewandte Chemie International Edition, 2012, 51(42): 10570–10575.

    [67] Li Jingliang, Bao Hongchun, Hou Xueliang, et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. An-gewandte Chemie International Edition, 2012, 51(8): 1830–1834.

    [68] Prusty Sudakshina, Mavi H S, Shukla A K. Optical nonlinearity in silicon nanoparticles: Effect of size and probing intensity[J]. Physical Review B, 2005, 71(11): 113313.

    [69] Chen Lianwei, Zheng Xiaorui, Du Zheren, et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens[J]. Nanoscale, 2015, 7(36), 14982–14988.

    [70] Jin Y J, Chen L W , Wu M X, et al. Enhanced saturable absorption of graphene oxide film via photonic nanojets[J]. Optical Materials Express, 2016, 6(4): 1114–1121.

    Rui Zhou, Fengping Li. Synthesis of nanoparticles by short pulsed laser ablation and its applications in nonlinear optics[J]. Opto-Electronic Engineering, 2017, 44(2): 172
    Download Citation