• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111430 (2020)
Xiaorong Jin, Qiang Wu*, Song Huang, Zixi Jia, Guanting Song, Xu Zhou, Jianghong Yao, and Jingjun Xu
Author Affiliations
  • Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
  • show less
    DOI: 10.3788/LOP57.111430 Cite this Article Set citation alerts
    Xiaorong Jin, Qiang Wu, Song Huang, Zixi Jia, Guanting Song, Xu Zhou, Jianghong Yao, Jingjun Xu. Research Progress on Hyperdoped Silicon Photodetectors Fabricated by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111430 Copy Citation Text show less
    References

    [1] Savin H. Repo P, von Gastrow G, et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency[J]. Nature Nanotechnology, 10, 624-628(2015).

    [2] Zhuang D W, Han X C, Li Y X et al. Silicon-based optoelectronic integrated optical phased array[J]. Laser & Optoelectronics Progress, 55, 050001(2018).

    [3] Sadrozinski H F W. Applications of silicon detectors[J]. IEEE Transactions on Nuclear Science, 48, 933-940(2001).

    [4] Roumanie M, Delattre C, Mittler F et al. Enhancing surface activity in silicon microreactors: use of black silicon and alumina as catalyst supports for chemical and biological applications[J]. Chemical Engineering Journal, 135, S317-S326(2008).

    [5] Striemer C C, Fauchet P M. Dynamic etching of silicon for broadband antireflection applications[J]. Applied Physics Letters, 81, 2980-2982(2002).

    [6] Yoo J. Reactive ion etching (RIE) technique for application in crystalline silicon solar cells[J]. Solar Energy, 84, 730-734(2010).

    [7] Yuan H, Yost V E, Page M et al. Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules[J]. Applied Physics Letters, 95, 123501(2009).

    [8] Steglich M, Oehme M, Käsebier T et al. Ge-on-Si photodiode with black silicon boosted responsivity[J]. Applied Physics Letters, 107, 051103(2015).

    [9] Hu S X, Han P D, Wang S et al. Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing[J]. Semiconductor Science and Technology, 27, 102002(2012).

    [10] Umezu I, Warrender J M, Charnvanichborikarn S et al. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens[J]. Journal of Applied Physics, 113, 213501(2013).

    [11] Mailoa J P, Akey A J, Simmons C B et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon[J]. Nature Communications, 5, 3011(2014).

    [12] Her T H, Finlay R J, Wu C et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 73, 1673-1675(1998).

    [13] Wu C, Crouch C H, Zhao L et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 78, 1850-1852(2001).

    [14] Carey J E, Crouch C H, Shen M Y et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Optics Letters, 30, 1773-1775(2005).

    [15] Huang Z H, Carey J E, Liu M G et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 89, 033506(2006).

    [16] Li X, Carey J E, Sickler J et al. Silicon photodiodes with high photoconductive gain at room temperature[J]. Optics Express, 20, 5518-5523(2012).

    [17] Wang X Y, Huang Y G, Liu D W et al. Fabrication of tellurium doped silicon detector by femtosecond laser and excimer laser[J]. Chinese Journal of Lasers, 40, 0302001(2013).

    [18] Li C H, Wang X P, Zhao J H et al. Black silicon IR photodiode supersaturated with nitrogen by femtosecond laser irradiation[J]. IEEE Sensors Journal, 18, 3595-3601(2018).

    [19] Carey P G, Sigmon T W. In-situ doping of silicon using the gas immersion laser doping (GILD) process[J]. Applied Surface Science, 43, 325-332(1989).

    [20] Winkler M T, Sher M J, Lin Y T et al. Studying femtosecond-laser hyperdoping by controlling surface morphology[J]. Journal of Applied Physics, 111, 093511(2012).

    [21] Crouch C H, Carey J E, Shen M et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Applied Physics A, 79, 1635-1641(2004).

    [22] Bucksbaum P H, Bokor J. Rapid melting and regrowth velocities in silicon heated by ultraviolet picosecond laser pulses[J]. Physical Review Letters, 53, 182-185(1984).

    [23] Reitano R, Smith P M, Aziz M J. Solute trapping of group III, IV, and V elements in silicon by an aperiodic stepwise growth mechanism[J]. Journal of Applied Physics, 76, 1518-1529(1994).

    [24] Sher M, Mangan N M, Smith M J et al. Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism[J]. Journal of Applied Physics, 117, 125301(2015).

    [25] Mangan N M. Organization and diffusion in biological and material fabrication problems[D]. Cambridge:Harvard University(2013).

    [26] Lin Y T, Mangan N M, Marbach S et al. Creating femtosecond-laser-hyperdoped silicon with a homogeneous doping profile[J]. Applied Physics Letters, 106, 062105(2015).

    [27] Mott N F, Twose W D. The theory of impurity conduction[J]. Advances in Physics, 10, 107-163(1961).

    [28] Mo Y N, Bazant M Z, Kaxiras E. Sulfur point defects in crystalline and amorphous silicon[J]. Physical Review B, 70, 205210(2004).

    [29] Shao H Z, Li Y, Zhang J H et al. Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon[J]. EPL (Europhysics Letters), 99, 46005(2012).

    [30] Sánchez K, Aguilera I, Palacios P et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al)[J]. Physical Review B, 82, 165201(2010).

    [31] Sher M, Mazur E. Intermediate band conduction in femtosecond-laser hyperdoped silicon[J]. Applied Physics Letters, 105, 032103(2014).

    [32] Gimpel T, Hoger I, Falk F et al. Electron backscatter diffraction on femtosecond laser sulfur hyperdoped silicon[J]. Applied Physics Letters, 101, 111911(2012).

    [33] Tull B R, Winkler M T, Mazur E. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon[J]. Applied Physics A, 96, 327-334(2009).

    [34] Dong X, Li N, Zhu Z et al. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation[J]. Applied Physics Letters, 104, 091907(2014).

    [35] Dong X. Properties and applications of the femtosecond laser formed nitrogen-hyperdoped silicon material[D]. Shanghai: Fudan University, 45-65(2014).

    [36] Du L Y, Wu Z M, Li R et al. Near-infrared photoresponse of femtosecond-laser processed Se-doped silicon n +-n photodiodes[J]. Optics Letters, 41, 5031-5034(2016).

    [37] Li C H, Zhao J H, Chen Q D et al. Sub-bandgap photo-response of non-doped black-silicon fabricated by nanosecond laser irradiation[J]. Optics Letters, 43, 1710-1713(2018).

    [38] Qiu X D, Yu X G, Yuan S et al. Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping[J]. Advanced Optical Materials, 6, 1700638(2018).

    [39] Huang S, Wu Q, Jia Z X et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 8, 1901808(2020).

    [40] Crouch C H, Carey J E, Warrender J M et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters, 84, 1850-1852(2004).

    [41] Smith M J, Lin Y T, Sher M et al. Pressure-induced phase transformations during femtosecond-laser doping of silicon[J]. Journal of Applied Physics, 110, 053524(2011).

    [42] Casalino M, Coppola G, Iodice M et al. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives[J]. Sensors, 10, 10571-10600(2010).

    [43] Queisser H J, Haller E. Defects in semiconductors: some fatal, some vital[J]. Science, 281, 945-950(1998).

    [44] Wang X, Zheng H, Tan C et al. Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film[J]. Optics Express, 18, 19379-19385(2010).

    [45] Smith M J, Sher M, Franta B et al. The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation[J]. Journal of Applied Physics, 112, 083518(2012).

    [46] Newman B, Sher M, Mazur E et al. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon[J]. Applied Physics Letters, 98, 251905(2011).

    [47] Kim T, Warrender J M, Aziz M J. Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur[J]. Applied Physics Letters, 88, 241902(2006).

    [48] Franta B, Pastor D, Gandhi H H et al. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing[J]. Journal of Applied Physics, 118, 225303(2015).

    [49] Dong X, Li N, Liang C et al. Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere[J]. Applied Physics Express, 6, 081301(2013).

    [50] Alpass C R, Murphy J D, Falster R J et al. Nitrogen diffusion and interaction with dislocations in single-crystal silicon[J]. Journal of Applied Physics, 105, 013519(2009).

    [51] Zhang H X, Stavola M, Seacrist M. Nitrogen-containing point defects in multi-crystalline Si solar-cell materials[J]. Journal of Applied Physics, 114, 093707(2013).

    [52] Sun H B, Liang C, Feng G J et al. Improving crystallinity of femtosecond-laser hyperdoped silicon via co-doping with nitrogen[J]. Optical Materials Express, 6, 1321-1328(2016).

    [53] Sun H B, Xiao J M, Zhu S W et al. Crystallinity and sub-band gap absorption of femtosecond-laser hyperdoped silicon formed in different N-containing gas mixtures[J]. Materials, 10, 351(2017).

    [54] Ma S X, Liu X L, Sun H B et al. Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF6/NF3 atmosphere[J]. Journal of The Optical Society of America B-Optical Physics, 37, 730-735(2020).

    [55] Jia Z X, Wu Q, Jin X R et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure[J]. Optics Express, 28, 5239-5247(2020).

    [56] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).

    [57] Wang M, Berencén Y, García-Hemme E et al. Extended infrared photoresponse in Te-Hyperdoped Si at room temperature[J]. Physical Review Applied, 10, 024054(2018).

    [58] Du L Y, Yin J, Wen Y Q et al. Possible excited states in Si∶Se and Si∶Te prepared by femtosecond-laser irradiation of Si coated with Se or Te film[J]. Infrared Physics & Technology, 104, 103150(2020).

    [59] Ye Y T, Ma H, Sun C L et al. Research progress on flexible photonic materials and devices[J]. Laser & Optoelectronics Progress, 57, 030001(2020).

    [60] Sun B Q, Shao M W, Lee S. Nanostructured silicon used for flexible and mobile electricity generation[J]. Advanced Materials, 28, 10539-10547(2016).

    [61] Xie C, Yan F. Flexible photodetectors based on novel functional materials[J]. Small, 13, 1701822(2017).

    [62] Wang S, Weil B D, Li Y B et al. Large-area free-standing ultrathin single-crystal silicon as processable materials[J]. Nano Letters, 13, 4393-4398(2013).

    [63] Mulazimoglu E, Coskun S, Gunoven M et al. Silicon nanowire network metal-semiconductor-metal photodetectors[J]. Applied Physics Letters, 103, 083114(2013).

    [64] Hossain M, Kumar G S. Barimar Prabhava S N, et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications[J]. ACS Nano, 12, 4727-4735(2018).

    [65] Dai Y J, Wang X F, Peng W B et al. Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: an approach for photosensing below bandgap energy[J]. Advanced Materials, 30, 1705893(2018).

    [66] Yao G, Pan T S, Yan Z C et al. Tailoring the energy band in flexible photodetector based on transferred ITO/Si heterojunction via interface engineering[J]. Nanoscale, 10, 3893-3903(2018).

    [67] Mei H, Wang C, Yao J et al. Development of novel flexible black silicon[J]. Optics Communications, 284, 1072-1075(2011).

    [68] Jin X R, Sun Y Q, Wu Q et al. High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon[J]. ACS Applied Materials & Interfaces, 11, 42385-42391(2019).

    [69] Wale M J. Self aligned, flip chip assembly of photonic devices with electrical and optical connections. [C]∥40th Conference Proceedings on Electronic Components and Technology, May 20-23, 1990, Las Vegas, NV, USA, USA, 3897338(1990).

    [70] Leclerc D, Brosson P, Pommereau F et al. High-performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique[J]. IEEE Photonics Technology Letters, 7, 476-478(1995).

    Xiaorong Jin, Qiang Wu, Song Huang, Zixi Jia, Guanting Song, Xu Zhou, Jianghong Yao, Jingjun Xu. Research Progress on Hyperdoped Silicon Photodetectors Fabricated by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111430
    Download Citation