• Photonic Sensors
  • Vol. 10, Issue 3, 233 (2020)
Salman DANIEL1、* and Prince BAWUAH2
Author Affiliations
  • 1Institute of Photonics, University of Eastern Finland, Joensuu FI-80101, Finland
  • 2Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
  • show less
    DOI: 10.1007/s13320-019-0573-6 Cite this Article
    Salman DANIEL, Prince BAWUAH. Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz[J]. Photonic Sensors, 2020, 10(3): 233 Copy Citation Text show less
    References

    [1] E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials, 2007, 1(1): 12–18.

    [2] D. R. Smith, “Metamaterials and negative refractive index,” Science, 2004, 305(5685): 788–792.

    [3] J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Scientific Reports, 2017, 7(1): 6740.

    [4] V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics, 2007, 1(1): 41–48.

    [5] A. M. Fox, Optical properties of solids. Oxford: Oxford University Press, 2001.

    [6] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, 2000, 85(18): 3966–3969.

    [7] C. Wu, I. N. Burton, G. Shvets, J. John, A. Milder, B. Zollars, et al., “Large-area wide-angle spectrally selective plasmonic absorber,” Physical Review B, 2011, 84(7): 075102.

    [8] T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Scientific Reports, 2014, 4: 3955.

    [9] Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Applied Physics A, 2011, 102(1): 99–103.

    [10] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, 2008, 100(20): 207402.

    [11] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, et al., “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Physical Review B, 2008, 78(24): 241103.

    [12] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Communications, 2011, 2: 517.

    [13] W. Li, X. Zhou, Y. Ying, X. Qiao, F. Qin, Q. Li, et al.,“Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array,” AIP Advances, 2015, 5(6): 067151.

    [14] D. Lim, D. Lee, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber using via array,” Scientific Reports, 2016, 6(1): 39686.

    [15] Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” Journal of the Optical Society of America B, 2010, 27(3): 498.

    [16] L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Applied Physics Letters, 2015, 106(3): 031107.

    [17] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Optics Express, 2008, 16(10): 7181.

    [18] T. T. Nguyen and S. Lim, “Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector,” Scientific Reports, 2017, 7(1): 3204.

    [19] T. Wu, J. Lai, S. Wang, X. Li, and Y. Huang, “UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths,” Applied Optics, 2017, 56(21): 5844.

    [20] N. T. Trung, D. Lee, H. K. Sung, and S. Lim, “Angle- and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors,” Applied Optics, 2016, 55(29): 8301.

    [21] S. Shang, S. Yang, L. Tao, L. Yang, and H. Cao, “Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber,” AIP Advances, 2016, 6(7): 075203.

    [22] X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide inciden angle,” Progress in Electromagnetics Research, 2011, 115: 381–397.

    [23] Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Optics Letters, 2011, 36(6): 945.

    [24] Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Applied Physics Letters, 2009, 95(24): 241111.

    [25] X. Huang, C. Lu, C. Rong, and M. Liu, “Wide-angle perfect metamaterial absorbers based on cave-rings and the complementary patterns,” Optical Materials Express, 2018, 8(9): 2520.

    [26] X. Huang, C. Lu, C. Rong, Z. Hu, and M. Liu, “Multiband ultrathin polarization-insensitive terahertz perfect absorbers with complementary metamaterial and resonator based on high-order electric and magnetic resonances,” IEEE Photonics Journal, 2018, 10(6): 1–11.

    [27] T. Cao, S. Wang, and C. W. Wei, “Simulation of tunable metamaterial perfect absorber by modulating Bi2Se3 dielectric function,” Materials Express, 2016, 6(1): 45–52.

    [28] W. Dong, Y. Qiu, J. Yang, R. E. Simpson, and T. Cao, “Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings,” The Journal of Physical Chemistry C, 2016, 120(23): 12713–12722.

    [29] T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” Journal of the Optical Society of America B, 2013, 30(6): 1580.

    [30] T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” Journal of the Optical Society of America B, 2013, 30(2): 439.

    [31] T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Optical Materials Express, 2013, 3(8): 1101.

    [32] G. P. Williams, “Filling the THz gap–high power sources and applications,” Reports on Progress in Physics, 2005, 69(2): 301–326.

    [33] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35.

    [34] Y. J. Yoo, J. S. Hwang, and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave,” Journal of Electromagnetic Waves and Applications, 2017, 31(7): 663–715.

    [35] C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, et al., “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Scientific Reports, 2016, 6(1): 32466.

    [36] X. Liu, C. Lan, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on artificial dielectric ‘molecules’,” Scientific Reports, 2016, 6(1): 28906.

    [37] X. Liu, C. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, “Dual band metamaterial perfect absorber based on Mie resonances,” Applied Physics Letters, 2016, 109(6): 062902.

    [38] B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, et al.,“Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Optics Express, 2011, 19(16): 15221.

    [39] H. M. Lee and H. Lee, “A dual-band metamaterial absorber based with resonant-magnetic structures,” Progress in Electromagnetics Research, 2012, 33: 1–12.

    [40] Y. Ma, H. Zhang, Y. Li, and Y. Wang, “Miniaturized and dual-band metamaterial absorber with fractal Sierpinski structure,” Journal of the Optical Society of America B, 2014, 31(2): 325.

    [41] K. Z. Rajab, M. Naftaly, E. H. Linfield, J. C. Nino, D. Arenas, D. Tanner, et al. “Broadband dielectric characterization of aluminum oxide (Al2O3),” Journal of Microelectronics and Electronic Packaging, 2008, 5(1): 2–7.

    [42] N. Matsumoto, T. Hosokura, K. Kageyama, H. Takagi, Y. Sakabe, and M. Hangyo, “Analysis of dielectric response of TiO2 in terahertz frequency region by general harmonic oscillator model,” Japanese Journal of Applied Physics, 2008, 47(9): 7725–7728.

    [43] A. D. Raki-, A. B. Djuri-i-, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, 1998, 37(22): 5271.

    [44] J. R. DeVore, “Refractive indices of rutile and sphalerite,” Journal of the Optical Society of America, 1951, 41(6): 416.

    [45] D. M. Pozar, Microwave engineering, 4th Ed. USA: Wiley, 2011.

    [46] S. Daniel and P. Bawuah, “Highly polarization and wide-angle insensitive metamaterial absorber for terahertz applications,” Optical Materials, 2018, 84: 447–452.

    [47] Y. Bai, L. Zhao, D. Ju, Y. Jiang, and L. Liu, “Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial,” Optics Express, 2015, 23(7): 8670.

    [48] E. P. J. Parrott, J. A. Zeitler, T. Fri--i-, M. Pepper, W. Jones, G. M. Day, et al., “Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals,” Crystal Growth and Design, 2009, 9(3): 1452–1460.

    [49] N. Negishi, S. Matsuzawa, K. Takeuchi, and P. Pichat, “Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination: characteristics and photocatalytic activities for removing acetaldehyde or toluene in air,” Chemistry of Materials, 2007, 19(15): 3808–3814.

    Salman DANIEL, Prince BAWUAH. Right-Angle Shaped Elements as Dual-Band Metamaterial Absorber in Terahertz[J]. Photonic Sensors, 2020, 10(3): 233
    Download Citation