• Chinese Journal of Lasers
  • Vol. 46, Issue 8, 0802003 (2019)
Xianxin Zhou, Bo Xin, Yadong Gong*, Weijian Zhang, and Haiquan Zhang
Author Affiliations
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, China
  • show less
    DOI: 10.3788/CJL201946.0802003 Cite this Article Set citation alerts
    Xianxin Zhou, Bo Xin, Yadong Gong, Weijian Zhang, Haiquan Zhang. Effect of Scanning Direction on Microstructure and Mechanical Properties of Part Formed via Variable Thickness Layer Cladding Deposition[J]. Chinese Journal of Lasers, 2019, 46(8): 0802003 Copy Citation Text show less
    References

    [1] Deng Z Q, Shi S H, Zhou B et al. Laser cladding forming of unequal-height curved arc-shaped thin-wall structures[J]. Chinese Journal of Lasers, 44, 0902005(2017).

    [2] Wang X Y, Wang Y F, Jiang H et al. Laser cladding forming of round thin-walled parts with slope angle[J]. Chinese Journal of Lasers, 41, 0103006(2014).

    [3] Shamsaei N, Yadollahi A, Bian L K et al. An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 8, 12-35(2015). http://www.sciencedirect.com/science/article/pii/S2214860415000329

    [4] Xiao Y, Lu Y Y, Guo X X et al. Study on process and properties of thin-walled structure part by laser additive manufacturing[J]. Laser & Optoelectronics Progress, 55, 081405(2018).

    [5] Guan K, Wang Z M, Gao M et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Materials & Design, 50, 581-586(2013). http://www.sciencedirect.com/science/article/pii/S0261306913002562

    [6] Guo P, Zou B, Huang C Z et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition[J]. Journal of Materials Processing Technology, 240, 12-22(2017). http://www.sciencedirect.com/science/article/pii/S0924013616303181

    [7] Dinda G P, Dasgupta A K, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability[J]. Materials Science and Engineering: A, 509, 98-104(2009). http://www.sciencedirect.com/science/article/pii/S0921509309000215

    [8] Mertens A, Reginster S, Contrepois Q et al[J]. mechanical properties of stainless steel AISI 316L processed by selective laser melting. Materials Science Forum, 783/784/785/786, 898-903(2014).

    [9] Chen D N, Liu T T, Liao W H et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 43, 0403003(2016).

    [10] Yu J, Lin X, Ma L et al. Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF)[J]. Materials Science and Engineering: A, 528, 1094-1104(2011). http://www.sciencedirect.com/science/article/pii/S092150931001124X

    [11] Ding L, Li H X, Wang Y D et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 42, 0406003(2015).

    [12] Tillmann W, Schaak C, Nellesen J et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting[J]. Additive Manufacturing, 13, 93-102(2017). http://www.sciencedirect.com/science/article/pii/S2214860416300495

    [13] Wang X Y, Guo H R, Xu W J et al. Laser cladding of a ramp thin wall with a variable[J]. Advanced Materials Research, 216, 419-423(2011). http://www.scientific.net/AMR.216.419

    [14] Zhu G X, Li D C, Zhang A F et al. The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition[J]. Optics & Laser Technology, 44, 349-356(2012). http://www.sciencedirect.com/science/article/pii/S0030399211002027

    [15] Lai Y B, Bo Y, Wang D Y. Theoretical calculation and experimental verification of Z increment in laser metal direct manufacturing[C]∥International Symposium on Mechanical Engineering and Material Science (ISMEMS 2017), May 25(2017).

    [16] Cao J, Liu F C, Lin X et al. Effect of overlap rate on recrystallization behaviors of laser solid formed inconel 718 superalloy[J]. Optics & Laser Technology, 45, 228-235(2013). http://www.sciencedirect.com/science/article/pii/S0030399212003143

    [17] Wen S F, Shuai L, Wei Q S et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 214, 2660-2667(2014).

    [18] Amine T, Newkirk J W, Liou F. An investigation of the effect of direct metal deposition parameters on the characteristics of the deposited layers[J]. Case Studies in Thermal Engineering, 3, 21-34(2014). http://www.sciencedirect.com/science/article/pii/S2214157X14000070

    [19] Hassan A, Abdalkariem Hassan. 增材制造中激光扫描路径对倾斜薄壁件力学性能的影响研究[D]. 大连: 大连理工大学, 29-34(2016).

         Effect of slicing trajectories on mechanical properties of sloped thin-walled part produced by laser additive manufacturing[D]. Dalian: Dalian University of Technology, 29-34(2016).

    [20] Wang L, Felicelli S D, Pratt P. Residual stresses in LENS-deposited AISI 410 stainless steel plates[J]. Materials Science and Engineering: A, 496, 234-241(2008). http://www.sciencedirect.com/science/article/pii/S0921509308005868

    Xianxin Zhou, Bo Xin, Yadong Gong, Weijian Zhang, Haiquan Zhang. Effect of Scanning Direction on Microstructure and Mechanical Properties of Part Formed via Variable Thickness Layer Cladding Deposition[J]. Chinese Journal of Lasers, 2019, 46(8): 0802003
    Download Citation