• Journal of Inorganic Materials
  • Vol. 35, Issue 4, 439 (2020)
Ting CHEN1、2, Yanqiao XU1, Weihui JIANG1、2, Zhixiang XIE1, Lianjun WANG2、3, and Wan JIANG2、3
Author Affiliations
  • 1School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
  • 2National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen 333001, China
  • 3Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • show less
    DOI: 10.15541/jim20190260 Cite this Article
    Ting CHEN, Yanqiao XU, Weihui JIANG, Zhixiang XIE, Lianjun WANG, Wan JIANG. Ionic Liquid Assisted Microwave Synthesis of Cu-In-Zn-S/ZnS Quantum Dots and Their Application in White LED[J]. Journal of Inorganic Materials, 2020, 35(4): 439 Copy Citation Text show less
    References

    [1] S YE, F XIAO, X PAN Y et al. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R, 71, 1-34(2010).

    [2] J HOERDER G, M SEIBALD, D BAUMANN et al. Sr[Li2Al2O2N2]:Eu2+- a high performance red phosphor to brighten the future. Nat. Commun., 10, 1824(2019).

    [3] L WANG, J XIE R, T SUEHIRO et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem. Rev., 118, 1951-2009(2018).

    [4] M PIETRYGA J, S PARK Y, J LIM et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev., 116, 10513-10622(2016).

    [5] H DAICHO, T IWASAKI, K ENOMOTO et al. A novel phosphor for glareless white light-emitting diodes. Nat. Commun.,, 3, 1132(2012).

    [6] K GUPTA K V, A MULEY, P YADAV et al. Combustion synthesis of YAG:Ce and related phosphors. Appl. Phys. B, 105, 479-484(2011).

    [7] X KANG, Y YANG, L WANG et al. Warm white light emitting diodes with gelatin-coated AgInS2/ZnS core/shell quantum dots. ACS Appl. Mater. Interfaces, 7, 27713-27719(2015).

    [8] H CHUANG P, C LIN C, S LIU R. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Appl. Mater. Interfaces, 6, 15379-15387(2014).

    [9] P ILAIYARAJA, P S V MOCHERLA, T K SRINIVASAN et al. Synthesis of Cu-deficient and Zn-graded Cu-In-Zn-S quantum dots and hybrid inorganic-organic nanophosphor composite for white light emission. ACS Appl. Mater. Interfaces, 8, 12456-12465(2016).

    [10] Y JO D, H YANG. Spectral broadening of Cu-In-Zn-S quantum dot color converters for high color rendering white lighting device. J. Lumin., 166, 227-232(2015).

    [11] K GUGULA, L STEGEMANN, J CYWINSKI P et al. Facile surface engineering of CuInS2/ZnS quantum dots for LED down- converters. RSC Adv., 6, 10086-10093(2016).

    [12] J CHEN, Y LI, L WANG et al. Achieving deep-red-to-near- infrared emissions in Sn-doped Cu-In-S/ZnS quantum dots for red-enhanced white LEDs and near-infrared LEDs. Nanoscale, 10, 9788-9795(2018).

    [13] F CHEN, Y YAO, H LIN et al. Synthesis of CuInZnS quantum dots for cell labelling applications. Ceram. Int., 44, S34-S37(2018).

    [14] B CHEN, H ZHONG, M WANG et al. Integration of CuInS2- based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale, 5, 3514-3519(2013).

    [15] R XIE, M RUTHERFORD, X PENG. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc., 131, 5691-5697(2009).

    [16] W ZHANG, Q LOU, W JI et al. Color-tunable highly bright photoluminescence of cadmium-free Cu-doped Zn-In-S nanocrystals and electroluminescence. Chem. Mater., 26, 1204-1212(2014).

    [17] H KIM J, H YANG. High-efficiency Cu-In-S quantum-dot- light-emitting device exceeding 7%. Chem. Mater., 28, 6329-6335(2016).

    [18] R WU, T WANG, M WU et al. Synthesis of highly stable CuInZnS/ ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay. Chem. Eng. J., 348, 447-454(2018).

    [19] X CHEN, S CHEN, T XIA et al. Aqueous synthesis of high quality multicolor Cu-Zn-In-S quantum dots. J. Lumin., 188, 162-167(2017).

    [20] Y LIU, X CHEN, Q MA. An efficient microwave-assisted hydrothermal synthesis of high-quality CuInZnS/ZnS quantum dots. New J. Chem., 42, 4102-4108(2018).

    [21] T JIANG, J SONG, H WANG et al. Aqueous synthesis of color tunable Cu doped Zn-In-S/ZnS nanoparticles in the whole visible region for cellular imaging. J. Mater. Chem. B, 3, 2402-2410(2015).

    [22] Y XU, T CHEN, X HU et al. The off-stoichiometry effect on the optical properties of water-soluble copper indium zinc sulfide quantum dots. J. Colloid Interf. Sci., 496, 479-486(2017).

    [24] J ZHANG, R XIE, W YANG. A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chem. Mater., 23, 3357-3361(2011).

    [25] J CHENG, D LI, T CHENG et al. Aqueous synthesis of high- fluorescence CdZnTe alloyed quantum dots. J. Alloys. Compd., 589, 539-544(2014).

    [26] J ZHANG, W SUN, L YIN et al. One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots. J. Mater. Chem. C, 2, 4812-4817(2014).

    [27] Y YU, L XU, J CHEN et al. Hydrothermal synthesis of GSH- TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloid. Surface B, 95, 247-253(2012).

    [28] Y CHEN, W LI, J WANG et al. Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B, 191, 94-105(2016).

    [29] J ZHU Y, F CHEN. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev., 114, 6462-6555(2014).

    [30] S VEMPATI, Y ERTAS, T UYAR. Sensitive surface states and their passivation mechanism in CdS quantum dots. J. Phys. Chem. C, 117, 21609-21618(2013).

    [31] Z LENG, L HUANG, F SHAO et al. Facile synthesis of Cu-In-Zn-S alloyed nanocrystals with temperature-dependent photoluminescence spectra. Mater. Lett., 119, 100-103(2014).

    [32] Y DING, Z SHEN S, H SUN et al. Synthesis of L-glutathione- capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous. Sensor. Actuat. B, 203, 35-43(2014).

    [33] Y WANG, X LIANG, X MA et al. Simple and greener synthesis of highly photoluminescence Mn2+-doped ZnS quantum dots and its surface passivation mechanism. Appl. Surf. Sci., 316, 54-61(2014).

    [34] Z LUO, H ZHANG, J HUANG et al. One-step synthesis of water- soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interf. Sci., 377, 27-33(2012).

    [35] J ZHANG, J LI, J ZHANG et al. Aqueous synthesis of ZnSe nanocrystals by using glutathione as ligand: the pH-mediated coordination of Zn2+ with glutathione. J. Phys. Chem. C, 114, 11087-11091(2010).

    [36] D REGULACIO M, Y WIN K, L LO S et al. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale, 5, 2322-2327(2013).

    [37] M KO, C YOON H, H YOO et al. Highly efficient green Zn-Ag- In-S/Zn-In-S/ZnS QDs by a strong exothermic reaction for down- converted green and tripackage white LEDs. Adv. Funct. Mater., 27, 1602638(2017).

    [38] Z LIU, A TANG, M WANG et al. Heating-up synthesis of cadimum-free and color-tunable quaternary and five-component Cu-In-Zn-S-based semiconductor nanocrystals. J. Mater. Chem. C, 3, 10114-10120(2015).

    Ting CHEN, Yanqiao XU, Weihui JIANG, Zhixiang XIE, Lianjun WANG, Wan JIANG. Ionic Liquid Assisted Microwave Synthesis of Cu-In-Zn-S/ZnS Quantum Dots and Their Application in White LED[J]. Journal of Inorganic Materials, 2020, 35(4): 439
    Download Citation