• Photonics Research
  • Vol. 4, Issue 6, 313 (2016)
M. Tsuzuki1, L. Jin1, M. Yamanaka1, V. Sonnenchein1, H. Tomita1, A. Sato2, T. Ohara2, Y. Sakakibara3, E. Omoda3, H. Kataura3, T. Iguchi1, and N. Nishizawa1、*
Author Affiliations
  • 1Department of Quantum Engineering, Nagoya University, Nagoya 464-8603, Japan
  • 2Sekisui Medical Co. Ltd., Ibaraki 319-1182, Japan
  • 3National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
  • show less
    DOI: 10.1364/PRJ.4.000313 Cite this Article Set citation alerts
    M. Tsuzuki, L. Jin, M. Yamanaka, V. Sonnenchein, H. Tomita, A. Sato, T. Ohara, Y. Sakakibara, E. Omoda, H. Kataura, T. Iguchi, N. Nishizawa. Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film[J]. Photonics Research, 2016, 4(6): 313 Copy Citation Text show less
    References

    [1] A. Schliesser, N. Picque, T. W. Hansch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).

    [2] M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, J. Ye. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express, 16, 2387-2397(2008).

    [3] C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, U. Keller. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8  um from a compact fiber source. Opt. Lett., 32, 1138-1140(2007).

    [4] A. Gambetta, R. Ramponi, M. Marangoni. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt. Lett., 33, 2671-2673(2008).

    [5] F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, H. A. Schuessler. High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator. Opt. Lett., 38, 2360-2362(2013).

    [6] T. W. Neely, T. A. Johnson, S. A. Diddams. High-power broadband laser source tunable from 3.0 to 4.4  μm based on a femtosecond Yb:fiber oscillator. Opt. Lett., 36, 4020-4022(2011).

    [7] S. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, M. Marangoni. Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Opt. Lett., 37, 2232-2234(2012).

    [8] F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, J. Ye. Phase-stabilized, 1.5  W frequency comb at 2.8–4.8  μm. Opt. Lett., 34, 1330-1332(2009).

    [9] N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov. Octave-spanning ultrafast OPO with 2.6–6.1  μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express, 20, 7046-7053(2012).

    [10] K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, I. Hartl. Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator. Opt. Lett., 38, 1191-1193(2013).

    [11] N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, G. Galzerano. 250-MHz synchronously pumped optical parametric oscillator at 2.25–2.6  μm and 4.1–4.9  μm. Opt. Express, 20, 22042-22047(2012).

    [12] Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, X.-C. Zhang. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55  μm. Appl. Phys. Lett., 81, 975-977(2002).

    [13] N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, K. Itoh. All-polarization-maintaining Er-doped ultrashort pulse fiber laser using carbon nanotube saturable absorber. Opt. Express, 16, 9429-9435(2008).

    [14] Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, K. Itoh. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film. Opt. Express, 17, 20233-20241(2009).

    [15] S. Yamashita. A tutorial on nonlinear photonic applications of carbon nanotube and graphene. J. Lightwave Technol., 30, 427-447(2012).

    [16] N. Nishizawa. Generation and application of high-quality supercontinuum sources. Opt. Fiber Technol., 18, 394-402(2012).

    [17] N. Nishizawa. Ultrashort pulse fiber lasers and their applications. Jpn. J. Appl. Phys., 53, 090101(2014).

    [18] H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B, 69, 327-332(1999).

    [19] Y. Deng, F. Lu, W. H. Knox. Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications. Opt. Express, 13, 4589-4593(2005).

    [20] R. Trebino. Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses(2000).

    [21] N. Nishizawa, T. Goto. Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser. J. Appl. Phys., 40, L365-L367(2001).

    [22] G. P. Agrawal. Nonlinear Fiber Optics(2007).

    [23] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [24] T. Hori, N. Nishizawa, T. Goto, M. Yoshida. Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse. J. Opt. Soc. Am. B, 21, 1969-1980(2004).

    [25] N. Nishizawa, T. Goto. Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating. Opt. Express, 8, 328-334(2001).

    [26] A. Okamura, Y. Sakakibara, E. Omoda, H. Kataura, N. Nishizawa. Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG). J. Opt. Soc. Am. B, 32, 400-406(2015).

    [27] L. Jin, M. Yamanaka, V. Sonnenschein, H. Tomita, T. Iguchi, A. Sato, A. Omori, A. Ideno, T. Oh-hara, N. Nishizawa. Highly coherent tunable mid-infrared optical frequency comb pumped by supercontinuum at 1  μm. Laser Congress (ASSL), ATh1A.7(2016).

    CLP Journals

    [1] Yue Tao, Sheng-Ping Chen. All-fiber high-power linearly polarized supercontinuum generation from polarization-maintaining photonic crystal fibers[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e28

    [2] Xintong Xu, Shuangchen Ruan, Jianpang Zhai, Ling Li, Jihong Pei, Zikang Tang. Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes[J]. Photonics Research, 2018, 6(11): 996

    [3] Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Lili Hu, Long Zhang, Longfei Wang, Guanshi Qin, Tianfeng Xue, Danping Chen, Weiqing Gao. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion[J]. Photonics Research, 2018, 6(6): 601

    M. Tsuzuki, L. Jin, M. Yamanaka, V. Sonnenchein, H. Tomita, A. Sato, T. Ohara, Y. Sakakibara, E. Omoda, H. Kataura, T. Iguchi, N. Nishizawa. Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film[J]. Photonics Research, 2016, 4(6): 313
    Download Citation