• Acta Optica Sinica
  • Vol. 44, Issue 18, 1800010 (2024)
Xinhua Hong1,2, Chengxin Zhang2,3, Xuesuo Zhang4, and Wenqing Liu2,5,*
Author Affiliations
  • 1College of Life and Environment Sciences, Huangshan University, Huangshan 245041, Anhui , China
  • 2Institute of Environmental, Hefei Comprehensive National Science Center, Hefei 230031, Anhui , China
  • 3Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 4Anhui Wanfeng Changneng Investment Co., Ltd., Hefei 231131, Anhui , China
  • 5Anhui Institute of Optics and Fine Mechanics, Anhui Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • show less
    DOI: 10.3788/AOS241153 Cite this Article Set citation alerts
    Xinhua Hong, Chengxin Zhang, Xuesuo Zhang, Wenqing Liu. On-Orbit Evaluation of Spectral Performance and High-Precision Retrieval of Atmospheric Carbon Dioxide Based on TanSat (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800010 Copy Citation Text show less
    References

    [1] IPCC. Sixth assessment report[R](2023).

    [2] WMO. Greenhouse gas bulletin 2023[R](2023).

    [3] Buchwitz M, de Beek R, Noël S et al. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval[J]. Atmospheric Chemistry and Physics, 6, 2727-2751(2006).

    [4] Zhou Y F, Leung H, Blanchette M. Sensor alignment with Earth-centered Earth-fixed (ECEF) coordinate system[J]. IEEE Transactions on Aerospace and Electronic Systems, 35, 410-418(1999).

    [5] Noël S, Reuter M, Buchwitz M et al. Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm[J]. Atmospheric Measurement Techniques, 15, 3401-3437(2022).

    [6] Taylor T E, O’dell C W, Baker D et al. Evaluating the consistency between OCO-2 and OCO-3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm[J]. Atmospheric Measurement Techniques, 16, 3173-3209(2023).

    [7] Jacobs N, O’dell C W, Taylor T E et al. The importance of digital elevation model accuracy in XCO2 retrievals: improving the orbiting carbon observatory 2 atmospheric carbon observations from space version 11 retrieval product[J]. Atmospheric Measurement Techniques, 17, 1375-1401(2024).

    [8] Lindqvist H, O’dell C W, Basu S et al. Does GOSAT capture the true seasonal cycle of carbon dioxide?[J]. Atmospheric Chemistry and Physics, 15, 13023-13040(2015).

    [9] Rayner P J, O’Brien D M. The utility of remotely sensed CO2 concentration data in surface source inversions[J]. Geophysical Research Letters, 28, 175-178(2001).

    [10] Miller C E, Crisp D, DeCola P L et al. Precision requirements for space-based XCO2 data[J]. Journal of Geophysical Research: Atmospheres, 112, JD007659(2007).

    [11] Basu S, Krol M, Butz A et al. The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI[J]. Geophysical Research Letters, 41, 1809-1815(2014).

    [12] Chevallier F, Palmer P I, Feng L et al. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2[J]. Geophysical Research Letters, 41, 1065-1070(2014).

    [13] Chen L F, Zhang Y, Zou M M et al. Overview of atmospheric CO2 remote sensing from space[J]. National Remote Sensing Bulletin, 19, 1-11(2015).

    [14] Wang X, Guo Z, Huang Y P et al. A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT)[J]. Advances in Atmospheric Sciences, 34, 16-25(2017).

    [15] Yang D X, Liu Y, Cai Z N et al. First global carbon dioxide maps produced from TanSat measurements[J]. Advances in Atmospheric Sciences, 35, 621-623(2018).

    [16] Liu Y, Wang J, Yao L et al. The TanSat mission: preliminary global observations[J]. Science Bulletin, 63, 1200-1207(2018).

    [17] Yang D, Boesch H, Liu Y et al. Toward high precision XCO2 retrievals from TanSat observations: retrieval improvement and validation against TCCON measurements[J]. Journal of Geophysical Research: Atmospheres, 125, JD032794(2020).

    [18] Platt U, Perner D, Pätz H. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research, 84, 6329-6335(1979).

    [19] Rodgers C D[M]. Inverse methods for atmospheric sounding(2000).

    [20] Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[J]. Reviews of Geophysics and Space Physics, 14, 609-624(1976).

    [21] Sun Z Q, Wang X H, Ye H H et al. Fast retrieval method of atmospheric CO2 based on GF-5 satellite remote sensing data[J]. Acta Optica Sinica, 44, 1801012(2024).

    [22] Engelen R J, Andersson E, Chevallier F et al. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: methodology and first results[J]. Journal of Geophysical Research: Atmospheres, 109, JD004777(2004).

    [23] Maddy E S, Barnet C D, Goldberg M et al. CO2 retrievals from the Atmospheric Infrared Sounder: methodology and validation[J]. Journal of Geophysical Research: Atmospheres, 113, JD009402(2008).

    [24] Hong X H, Zhang P, Bi Y M et al. Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 4101716(2022).

    [25] Wu L H, Hasekamp O, Hu H L et al. Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements[J]. Atmospheric Measurement Techniques, 11, 3111-3130(2018).

    [26] Mayer B, Kylling A. Technical note: the libRadtran software package for radiative transfer calculations-description and examples of use[J]. Atmospheric Chemistry & Physics, 5, 1855-1877(2005).

    [27] Emde C, Buras-Schnell R, Kylling A et al. The libRadtran software package for radiative transfer calculations (version 2.0.1)[J]. Geoscientific Model Development, 9, 1647-1672(2016).

    [28] Obregón M A, Serrano A, Costa M J et al. Validation of libRadtran and SBDART models under different aerosol conditions[J]. IOP Conference Series: Earth and Environmental Science, 28, 012010(2015).

    [29] Eissa Y, Blanc P, Wald L et al. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?[J]. Atmospheric Measurement Techniques, 8, 5099-5112(2015).

    [30] Bey I, Jacob D J, Yantosca R M et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation[J]. Journal of Geophysical Research: Atmospheres, 106, 23073-23095(2001).

    [31] Emerson E W, Hodshire A L, DeBolt H M et al. Revisiting particle dry deposition and its role in radiative effect estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 26076-26082(2020).

    [32] Liu X X, Qu H, Huey L G et al. High levels of daytime molecular chlorine and nitryl chloride at a rural site on the North China Plain[J]. Environmental Science & Technology, 51, 9588-9595(2017).

    [33] Lutsch E, Strong K, Jones D B A et al. Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem[J]. Atmospheric Chemistry & Physics, 20, 12813-12851(2020).

    [34] Gordon I E, Rothman L S, Hill C et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 3-69(2017).

    [35] Yang Z D, Zhen Y Q, Yin Z S et al. Prelaunch radiometric calibration of the TanSat atmospheric carbon dioxide grating spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 4225-4233(2018).

    [36] Yang Z D, Bi Y M, Wang Q et al. Inflight performance of the TanSat atmospheric carbon dioxide grating spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 4691-4703(2020).

    [37] Du S S, Liu L Y, Liu X J et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Science Bulletin, 63, 1502-1512(2018).

    [38] Kurucz R L. High resolution irradiance spectrum from 300 to 1000 nm[R](2005).

    [39] Yoshida Y, Ota Y, Eguchi N et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques, 4, 717-734(2011).

    [40] Yoshida Y, Kikuchi N, Morino I et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques, 6, 1533-1547(2013).

    [41] Zhang C X, Liu C, Chan K L et al. First observation of tropospheric nitrogen dioxide from the environmental trace gases monitoring instrument onboard the GaoFen-5 satellite[J]. Light: Science & Applications, 9, 66(2020).

    [42] Xia C Z, Liu C, Cai Z N et al. First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GeoFen-5 satellite[J]. Science Bulletin, 66, 969-973(2021).

    [43] Bak J, Liu X, Kim J H et al. Characterization and correction of OMPS nadir mapper measurements for ozone profile retrievals[J]. Atmospheric Measurement Techniques, 10, 4373-4388(2017).

    [44] Zhao F, Liu C, Hu Q H et al. High spatial resolution ozone profiles retrieved from the first Chinese ultraviolet-visible hyperspectral satellite instrument[J]. Engineering, 32, 106-115(2024).

    [45] Liu X, Bhartia P K, Chance K et al. Ozone profile retrievals from the Ozone Monitoring Instrument[J]. Atmospheric Chemistry and Physics, 10, 2521-2537(2010).

    [46] Livingston J M, Redemann J, Shinozuka Y et al. Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008[J]. Atmospheric Chemistry and Physics, 14, 2015-2038(2014).

    [47] Munchak L A, Levy R C, Mattoo S et al. MODIS 3 km aerosol product: applications over land in an urban/suburban region[J]. Atmospheric Measurement Techniques, 6, 1747-1759(2013).

    [48] Remer L A, Mattoo S, Levy R C et al. MODIS 3 km aerosol product: algorithm and global perspective[J]. Atmospheric Measurement Techniques, 6, 1829-1844(2013).

    [49] Remer L A, Kaufman Y J, Tanré D et al. The MODIS aerosol algorithm, products, and validation[J]. Journal of the Atmospheric Sciences, 62, 947-973(2005).

    [50] Tilstra L G, Tuinder O N E, Wang P et al. Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY[J]. Journal of Geophysical Research: Atmospheres, 122, 4084-4111(2017).

    [51] Frankenberg C, Platt U, Wagner T. Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT[J]. Atmospheric Chemistry and Physics, 5, 9-22(2005).

    [52] Cai Z N, Sun K, Yang D X et al. On-orbit characterization of TanSat instrument line shape using observed solar spectra[J]. Remote Sensing, 14, 3334(2022).

    [53] Hong X H, Zhang C X, Tian Y et al. First TanSat CO2 retrieval over land and ocean using both nadir and glint spectroscopy[J]. Remote Sensing of Environment, 304, 114053(2024).

    [54] Wunch D, Toon G C, Blavier J F L et al. The total carbon column observing network[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2087-2112(2011).

    [55] Yang H, Feng G F, Xiang R et al. Spatio-temporal validation of AIRS CO2 observations using GAW, HIPPO and TCCON[J]. Remote Sensing, 12, 3583(2020).

    [56] Mendonca J, Nassar R, O’dell C W et al. Assessing the feasibility of using a neural network to filter Orbiting Carbon Observatory 2 (OCO-2) retrievals at northern high latitudes[J]. Atmospheric Measurement Techniques, 14, 7511-7524(2021).

    [57] Massie S T, Cronk H, Merrelli A et al. Analysis of 3D cloud effects in OCO-2 XCO2 retrievals[J]. Atmospheric Measurement Techniques, 14, 1475-1499(2021).

    [58] Liu Y, Yang D X, Cai Z N. A retrieval algorithm for TanSat XCO2 observation: retrieval experiments using GOSAT data[J]. Chinese Science Bulletin, 58, 1520-1523(2013).

    [59] O’dell C W, Connor B, Bösch H et al. The ACOS CO2 retrieval algorithm-Part 1: description and validation against synthetic observations[J]. Atmospheric Measurement Techniques, 5, 99-121(2012).

    [60] O’dell C W, Eldering A, Wennberg P O et al. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm[J]. Atmospheric Measurement Techniques, 11, 6539-6576(2018).

    [61] Buschmann M, Petri C, Palm M et al. TCCON data from Ny-Ålesund, Svalbard (NO), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/3t5by-f7e05

    [62] Wennberg P O, Wunch D, Yavin Y et al. TCCON data from Jet Propulsion Laboratory (US), 2007, Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/8an3t-kqb88

    [63] Wennberg P O, Roehl C M, Blavier J F et al. TCCON data from Jet Propulsion Laboratory (US), 2011, Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/1pe8f-3bd32

    [64] Morino I, Ohyama H, Hori A et al. TCCON data from Tsukuba (JP), 125HR, Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/2ve20-pr498

    [65] Kivi R, Heikkinen P, Kyrö E. TCCON data from Sodankylä (FI), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/fnpcw-myc91

    [66] Shiomi K, Kawakami S, Ohyama H et al. TCCON data from Saga (JP), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/dy9h2-6gc10

    [67] Morino I, Ohyama H, Hori A et al. TCCON data from Rikubetsu (JP), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/ksrr6-jqh95

    [68] de Mazière M, Sha M K, Desmet F et al. TCCON data from Réunion Island (RE), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/ynzeh-7d777

    [69] Wennberg P O, Roehl C M, Wunch D et al. TCCON data from Park Falls (US), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/xa6rd-9g966

    [70] Té Y, Jeseck P, Janssen C. TCCON data from Paris (FR), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/6cj5y-spd74

    [71] Warneke T, Petri C, Notholt J et al. TCCON data from Orléans (FR), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/gexfp-a3461

    [72] Sherlock V, Connor B, Robinson J et al. TCCON data from Lauder (NZ), 120HR, Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/88rj0-vsd46

    [73] Pollard D F, Robinson J, Shiona H. TCCON data from Lauder (NZ), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/1jb1r-rck28

    [74] Wennberg P O, Wunch D, Roehl C M et al. TCCON data from Lamont (US), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/zwkm5-2z990

    [75] Hase F, Herkommer B, Groß J et al. TCCON data from Karlsruhe (DE), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/v70q0-q6s64

    [76] García O E, Schneider M, Herkommer B et al. TCCON data from Izana (ES), Release GGG2020.R1[EB/OL]. https:∥data.caltech.edu/records/1g67b-34e79

    [77] Wunch D, Mendonca J, Colebatch O et al. TCCON data from East Trout Lake, SK (CA), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/b971b-jk686

    [78] Wennberg P O, Roehl C M, Wunch D et al. TCCON data from Caltech (US), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/dwedt-mpm96

    [79] Morino I, Velazco V A, Hori A et al. TCCON data from Burgos, Ilocos Norte (PH), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/8tfg7-t6d28

    [80] Notholt J, Petri C, Warneke T et al. TCCON data from Bremen (DE), Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/9hf0j-qa326

    [81] Liu C, Wang W, Sun Y W et al. TCCON data from Hefei (PRC), Release GGG2020.R1[EB/OL]. https:∥data.caltech.edu/records/etz11-jpg19

    [82] Zhou M, Wang P, Kumps N et al. TCCON data from Xianghe, China, Release GGG2020.R0[EB/OL]. https:∥data.caltech.edu/records/6ywxa-yk431

    Xinhua Hong, Chengxin Zhang, Xuesuo Zhang, Wenqing Liu. On-Orbit Evaluation of Spectral Performance and High-Precision Retrieval of Atmospheric Carbon Dioxide Based on TanSat (Invited)[J]. Acta Optica Sinica, 2024, 44(18): 1800010
    Download Citation