• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 1, 1 (2021)
Xin-Hui YE1、2, Tian XIE1、2, Hui XIA2, Xi-Ren CHEN2, Ju-Zhu LI2、3, Shuai-Jun ZHANG1、2, Xin-Yang JIANG2、4, Wei-Jie DENG2、4, Wen-Jing WANG2、3, Yu-Ying LI2, Wei-Wei LIU2, Fang LIU1、*, and Tian-Xin LI2、**
Author Affiliations
  • 1School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China
  • 4School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.01.001 Cite this Article
    Xin-Hui YE, Tian XIE, Hui XIA, Xi-Ren CHEN, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Fang LIU, Tian-Xin LI. Quantum well micropillar arrays with low filling factor for enhanced infrared absorption[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 1 Copy Citation Text show less
    References

    [1] A Goldberg, K K Choi, M Jhabvala et al. Large-format and multispectral QWIP infrared focal plane arrays. SPIE, 5074, 83-94(2003).

    [2] C L Tan, H Mohseni. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197(2017).

    [3] H C Liu, M Buchanan, Z R Wasilewski. How good is the polarization selection rule for intersubband transitions?. Applied Physics Letters, 46, 1156-1158(1985).

    [4] J Y Andersson, L Lundqvist, Z F Paska. Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler. Applied Physics Letters, 58, 2264-2266(1991).

    [5] G Sarusi, B F Levine, S J Pearton et al. Improved performance of quantum well infrared photodetectors using random scattering optical coupling. Applied Physics Letters, 64, 960-962(1994).

    [6] Da-Yuan Xiong, Yong Zeng, Ning Li et al. The grating optical coupling of the very long wavelength quantum well infrared photodetectors. Acta Physica Sinica, 55, 3642-3648(2006).

    [7] A Rogalski. Quantum well photoconductors in infrared detector technology. Journal of Applied Physics, 93, 4355-4391(2003).

    [8] J Yao, D C Tsui, K K Choi. Noise characteristics of quantum-well infrared photodetectors at low temperatures. Applied Physics Letters, 76, 206-208(2000).

    [9] A Singh, M O Manasreh. Quantum well and superlattice heterostructures for space-based long wavelength infrared photo detectors. SPIE, 2397, 193-209(1995).

    [10] Han Wang, Shi-Long Li, Hong-Lou Zhen et al. A tubular quantum well infrared photodetector under vertically-incident light coupling. J. Infrared Millim.Waves, 36, 191-195(2017).

    [11] W W Tang, J Zhou, Y L Zheng et al. All-dielectric resonant waveguide based quantum well infrared photodetectors for hyperspectral detection. Optics Communications, 427, 196-201(2018).

    [12] T Zhen, J Zhou, Z F Li et al. Realization of both high absorption of active materials and low ohmic loss in plasmonic cavities. Advanced Optical Material, 7, 1801627(1-8)(2019).

    [13] D Palaferri, Y todorov, A Bigioli et al. Room-temperature nine-µm-wavelength photo-detectors and GHz-frequency heterodyne receivers. Nature, 556, 85-88(2018).

    [14] H T Hideki, M Mano, T Kasaya et al. Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature. Nature Communications, 565(2020).

    [15] Wei-Da Hu, Qing Li, Xiao-Shuang Chen et al. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 68, 7-41(2019).

    [16] N Yu, F Capasso. Flat optics with designer metasurfaces. Nature Materials, 13, 139-150(2014).

    [17] I Yamada, T Ishihara, J Yanagisawa. Reflective waveplate with subwavelength grating structure. Japanese Journal of Applied Physics, 54, 092203(2015).

    [18] S Y Kosulnikov, E A Yankovskaya, S I Maslovski et al. Optimal filling factor of nanorod lenses for subwavelength imaging. Physical Review A, 84, 065801(2011).

    [19] S R Andrews, B A Miller. Experimental and theoretical studies of the performance of quantum-well infrared photodetectors. Journal of Applied Physics, 70, 993-1003(1991).

    [20] Jun Yang. Synthesis and properties of novel Benzocyclobutene monomers(2012).

    [21] T Skauli, P S Kuo, K L Vodopyanov et al. Improved dispersion relations for GaAs and applications to nonlinear optics. Journal of Applied Physics, 94, 6447-6455(2003).

    [22] D Dini, R Köhler, A Tredicucci et al. Microcavity Polariton Splitting of Intersubband Transitions. Physical Review Letters, 90, 116401(2003).

    [23] E Garnett, P Yang. Light Trapping in Silicon Nanowire Solar Cells. Nano Letters, 10, 1082-1087(2010).

    [24] S. Tibuleac. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges(2001).

    [25] Y Nga Chen, Y Todorov, B Askenazi et al. Antenna-coupled microcavities for enhanced infrared photo-detection. Applied Physics Letters, 104, 031113(2014).

    [26] M Mikulla, H Schneider, F Benkhelifa et al. Passivation of III/V-based compound semiconductor devices using high-density plasma deposited silicon nitride films. Proceedings-Electrochemical Society, 338-349(2005).

    Xin-Hui YE, Tian XIE, Hui XIA, Xi-Ren CHEN, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Fang LIU, Tian-Xin LI. Quantum well micropillar arrays with low filling factor for enhanced infrared absorption[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 1
    Download Citation