• Chinese Journal of Lasers
  • Vol. 48, Issue 24, 2403002 (2021)
Bing Peng1、2, Aihuan Dun1, Lunzhe Wu1, Zhe Wang1、2, and Xueke Xu1、*
Author Affiliations
  • 1Precision Optical Manufacturing and Testing Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2College of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202148.2403002 Cite this Article Set citation alerts
    Bing Peng, Aihuan Dun, Lunzhe Wu, Zhe Wang, Xueke Xu. Variable Removal Function in Atmospheric Pressure Plasma Polishing[J]. Chinese Journal of Lasers, 2021, 48(24): 2403002 Copy Citation Text show less
    References

    [1] Campbell J H, Hawley-Fedder R A, Stolz C J et al. NIF optical materials and fabrication technologies: an overview[J]. Proceedings of SPIE, 5341, 84-101(2004).

    [2] Baisden P A, Atherton L J, Hawley R A et al. Large optics for the national ignition facility[J]. Fusion Science and Technology, 69, 295-351(2016).

    [3] Zhang J F, Wang B, Dong S. Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surface[J]. Optics and Precision Engineering, 15, 1749-1755(2007).

    [4] Liao C D, Xie X H, Shi B L. Experimental study on ability of induction coupling of atmosphere plasmato removal quartz[J]. Aviation Precision Manufacturing Technology, 50, 1-4(2014).

    [5] Mori Y, Yamamura K, Yamauchi K et al. Plasma CVM (chemical vaporization machining): an ultra precision machining technique using high-pressure reactive plasma[J]. Nanotechnology, 4, 225-229(1993).

    [6] Takino H, Shibata N, Itoh H et al. Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode[J]. Applied Optics, 41, 3971-3977(2002).

    [7] Takino H, Shibata N, Itoh H et al. Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode[J]. Applied Optics, 45, 5897-5902(2006).

    [8] Arnold T, Böhm G, Fechner R et al. Ultra-precision surface finishing by ion beam and plasma jet techniques: status and outlook[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 616, 147-156(2010).

    [9] Meister J, Böhm G, Eichentopf I M et al. Simulation of the substrate temperature field for plasma assisted chemical etching[J]. Plasma Processes and Polymers, 6, S209-S213(2009).

    [10] Paetzelt H, Arnold T, Böhm G et al. Surface patterning by local plasma jet sacrificial oxidation of silicon[J]. Plasma Processes and Polymers, 10, 416-421(2013).

    [11] Fanara C, Shore P, Nicholls J R et al. A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE© surfaces[J]. Advanced Engineering Materials, 8, 933-939(2006).

    [12] Yu N, Jourdain R, Gourma M et al. Analysis of De-Laval nozzle designs employed for plasma figuring of surfaces[J]. The International Journal of Advanced Manufacturing Technology, 87, 735-745(2016).

    [13] Castelli M, Jourdain R, Morantz P et al. Rapid optical surface figuring using reactive atom plasma[J]. Precision Engineering, 36, 467-476(2012).

    [14] Zhang J F, Wang B, Dong S. Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surfaces[J]. Frontiers of Electrical and Electronic Engineering, 3, 480-487(2008).

    [15] Zhdanov V P. Arrhenius parameters for rate processes on solid surfaces[J]. Surface Science Reports, 12, 185-242(1991).

    [16] Tang W J, Liu Y W, Zhang H et al. New approximate formula for Arrhenius temperature integral[J]. Thermochimica Acta, 408, 39-43(2003).

    Bing Peng, Aihuan Dun, Lunzhe Wu, Zhe Wang, Xueke Xu. Variable Removal Function in Atmospheric Pressure Plasma Polishing[J]. Chinese Journal of Lasers, 2021, 48(24): 2403002
    Download Citation