• Journal of Inorganic Materials
  • Vol. 37, Issue 6, 603 (2022)
Huiping YANG1, Xuefan ZHOU1, Haojie FANG2, Xiaoyun ZHANG2, Hang LUO1, and Dou ZHANG1、*
Author Affiliations
  • 11. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
  • 22. Hunan Meicheng Ceramic Technology Co., Ltd., Loudi 417000, China
  • show less
    DOI: 10.15541/jim20210453 Cite this Article
    Huiping YANG, Xuefan ZHOU, Haojie FANG, Xiaoyun ZHANG, Hang LUO, Dou ZHANG. Field-induced Strain Property of Lead-free Ferroelectric Ceramics Based on Sodium Bismuth Titanate[J]. Journal of Inorganic Materials, 2022, 37(6): 603 Copy Citation Text show less
    References

    [2] M J HAUN, E FURMAN. Modeling of the electrostrictive, dielectric, and piezoelectric properties of ceramic PbTiO3. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 393-401(1989).

    [3] J RÖDEL, W JO, K T P SEIFERT et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 1153-1177(2009).

    [4] B JAFFE. Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element. Proceedings of the IRE, 1264-1267(1961).

    [5] L WU, J L ZHANG, C L WANG et al. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3ceramics. Journal of Applied Physics, 84(2008).

    [6] XIANG LV, JIAGANG WU, DINGQUAN XIAO et al. Modifying temperature stability of (K,Na)NbO3 ceramics through phase boundary. Advanced Electronic Materials, 1800205(2018).

    [7] C CHAO, X ZHAO, Y WANG et al. Giant strain and electric- field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3- (K0.5Na0.5)NbO3 single crystal. Applied Physics Letters, 022903(2016).

    [8] Y SAITO, H TAKAO, T TANI et al. Lead-free piezoceramics. Nature, 84-87(2004).

    [10] M ACOSTA, N NOVAK, V ROJAS et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Applied Physics Reviews, 041305(2017).

    [11] CHUNLIN ZHAO, BO WU, HAOCHENG THONG et al. Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics. Journal of the European Ceramic Society, 5411-5419(2018).

    [12] Y TAN, J ZHANG, C WANG et al. Enhancement of electric field-induced strain in BaTiO3ceramics through grain size optimization. Physica Status Solidi, 433-438(2015).

    [13] Z H ZHAO, X L LI, Y J DAI et al. Texture development in Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics prepared by reactive template grain growth with different Ba and Ca sources. Ceramics International, 18756-18763(2016).

    [14] S T ZHANG, A B KOUNGA, E AULBACH et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Applied Physics Letters, 112906(2007).

    [15] T ZHENG, J WU, D XIAO et al. Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 552-624(2018).

    [16] F LI, S ZHANG, T YANG et al. The origin of ultrahigh piezoelectricity in relax-ferroelectric solid solution crystals. Nature Communications, 13807(2016).

    [17] J HAO, B SHEN, J ZHAI et al. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3system. Journal of Applied Physics, 114106(2013).

    [18] J CHEN, Y WANG, Y ZHANG et al. Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3- 0.06BaTiO3. Journal of the European Ceramic Society, 2365-2371(2017).

    [19] Y HIRUMA, Y IMAI, Y WATANABE et al. Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3ferroelectric ceramics. Applied Physics Letters, 213(2008).

    [20] H NGUYEN, T A DUONG, F ERKINOV et al. Large electric field-induced strain response under a low electric field in lead-free Bi1/2Na1/2TiO3-SrTiO3-BiAlO3 ternary piezoelectric ceramics. Journal of Electronic Materials, 6677-6685(2020).

    [21] X Y TONG, H L LI, J J ZHOU et al. Giant electrostrain under low driving field in Bi1/2Na1/2TiO3-SrTiO3ceramics for actuator applications. Ceramics International, 16153-16159(2016).

    [22] Y HIRUMA, H NAGATA, T TAKENAKA. Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. Journal of Applied Physics, 809(2008).

    [23] Y ZHU, Y ZHANG, B XIE et al. Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3lead-free piezoceramic. Ceramics International, 7851-7857(2018).

    [24] H HE, X LU, M LI et al. Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics. Journal of Materials Chemistry C, 2411-2418(2020).

    [25] W BAI, D CHEN, P ZHENG et al. NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in grain oriented lead-free BNT-based piezoelectric materials. Journal of the European Ceramic Society, 2591-2604(2017).

    [26] D MAURYA, Y ZHOU, Y WANG et al. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3piezoelectric materials. Scientific Reports, 8595(2015).

    Huiping YANG, Xuefan ZHOU, Haojie FANG, Xiaoyun ZHANG, Hang LUO, Dou ZHANG. Field-induced Strain Property of Lead-free Ferroelectric Ceramics Based on Sodium Bismuth Titanate[J]. Journal of Inorganic Materials, 2022, 37(6): 603
    Download Citation