• Chinese Optics Letters
  • Vol. 16, Issue 12, 122601 (2018)
Arturo Barcelo-Chong, Brian Estrada-Portillo, Arturo Canales-Benavides, and Servando Lopez-Aguayo*
Author Affiliations
  • Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, México
  • show less
    DOI: 10.3788/COL201816.122601 Cite this Article Set citation alerts
    Arturo Barcelo-Chong, Brian Estrada-Portillo, Arturo Canales-Benavides, Servando Lopez-Aguayo. Asymmetric Mathieu beams[J]. Chinese Optics Letters, 2018, 16(12): 122601 Copy Citation Text show less
    Intensity of AM beams for the case of a fourth-order q=1 and angular phase shift β parameters of (a) π/4, (c) π/2, and (e) 2π/3. A third-order AM beam with q=2 and β parameters of (b) π/4, (d) π/2, and (f) 2π/3.
    Fig. 1. Intensity of AM beams for the case of a fourth-order q=1 and angular phase shift β parameters of (a) π/4, (c) π/2, and (e) 2π/3. A third-order AM beam with q=2 and β parameters of (b) π/4, (d) π/2, and (f) 2π/3.
    Phase distribution of AM beams, where (a), (c), and (e) are fourth order with ellipticity parameter q=1 and angular phase shift given by β parameters of π/4, π/2, and 2π/3, respectively. (b), (d), and (f) correspond to third-order AM beams with q=2 and β parameters of π/4, π/2, and 2π/3, respectively.
    Fig. 2. Phase distribution of AM beams, where (a), (c), and (e) are fourth order with ellipticity parameter q=1 and angular phase shift given by β parameters of π/4, π/2, and 2π/3, respectively. (b), (d), and (f) correspond to third-order AM beams with q=2 and β parameters of π/4, π/2, and 2π/3, respectively.
    Intensity of AM beams. (a) q=0.01, (b) q=2, (c) q=5, and (d) q=15. In all cases, from top to bottom, α=0, α=0.1, α=0.5, and α=1.
    Fig. 3. Intensity of AM beams. (a) q=0.01, (b) q=2, (c) q=5, and (d) q=15. In all cases, from top to bottom, α=0, α=0.1, α=0.5, and α=1.
    Intensity of asymmetric Gaussian–Mathieu beams with the following parameters: (a) q=0.01, (b) q=2, (c) q=5, and (d) q=15. In all cases, from top to bottom, α=0, α=0.1, α=0.5, and α=1.
    Fig. 4. Intensity of asymmetric Gaussian–Mathieu beams with the following parameters: (a) q=0.01, (b) q=2, (c) q=5, and (d) q=15. In all cases, from top to bottom, α=0, α=0.1, α=0.5, and α=1.
    Experimental setup. From left to right: He–Ne laser at 633 nm, 12 mW; BE, beam expander, 10×; SLM, spatial light modulator, LC2002; L1 and L2, lenses; D, diaphragm; CCD, Thorlabs CCD.
    Fig. 5. Experimental setup. From left to right: He–Ne laser at 633 nm, 12 mW; BE, beam expander, 10×; SLM, spatial light modulator, LC2002; L1 and L2, lenses; D, diaphragm; CCD, Thorlabs CCD.
    Experimental fourth-order AM beam obtained with parameters (a) α=1, (b) α=1.67, (c) α=5, (d) α=1.14, (e) α=1.19, and (f) α=1.25. The size of the transverse display area is 5 mm×3 mm. (g) Propagation of the AM beam in the x–z plane.
    Fig. 6. Experimental fourth-order AM beam obtained with parameters (a) α=1, (b) α=1.67, (c) α=5, (d) α=1.14, (e) α=1.19, and (f) α=1.25. The size of the transverse display area is 5mm×3mm. (g) Propagation of the AM beam in the xz plane.
    Power of asymmetric Gaussian–Mathieu beams as a function of the α parameter at different ellipticities given by the q parameter.
    Fig. 7. Power of asymmetric Gaussian–Mathieu beams as a function of the α parameter at different ellipticities given by the q parameter.
    OAM of asymmetric Gaussian–Mathieu beams as a function of the α parameter at different ellipticities given by the q parameter.
    Fig. 8. OAM of asymmetric Gaussian–Mathieu beams as a function of the α parameter at different ellipticities given by the q parameter.
    Arturo Barcelo-Chong, Brian Estrada-Portillo, Arturo Canales-Benavides, Servando Lopez-Aguayo. Asymmetric Mathieu beams[J]. Chinese Optics Letters, 2018, 16(12): 122601
    Download Citation