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We report the generation of asymmetric Mathieu beams: invariant intensity optical profiles that can be de-
scribed by three parameters. The first one describes the amount of ellipticity, the second one takes into account
the degree of asymmetry of the profile, and the third parameter denotes the angular position, where it is localized
with the respective asymmetry. We propose a simple angular spectrum to generate these nondiffracting beams,
and we report how it changes their distribution of power and orbital angular momentum in function with their
ellipticity and degree of asymmetry. We confirm the existence of these invariant beams by propagation in an
experimental setup.
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Optical lattices are artificial structures of light generated by
interfering optical laser beams, which creates a standing
wave pattern that induces a spatially dependent potential
energy that can be useful for the study and applications of
light–matter interactions[1]. Optical lattices have been used
for the detection of single atoms by a quantum gas micro-
scope[2] in the study of parity-time symmetry periodic po-
tentials[3], in the generation of quantum logic gates[4], and
for soliton routing[5] among other applications. In particu-
lar, a possibility to generate these optical landscapes is by
interfering several controlled beams[6], where nondiffracting
beams (NBs) are ideal candidates due to their only change
in phase during propagation. The NBs are particular solu-
tions to the Helmholtz equation given by

ð∇2 þ k2ÞEðx; y; zÞ ¼ 0; (1)

where k ¼ 2π∕λ is the wave number of a monochromatic
scalar light field E with a wavelength of λ. It is known,
as a result from group theory[7], that the Helmholtz equa-
tion is separable in eleven coordinate systems, but there are
only four coordinate systems that allow solutions that pre-
serve the same intensity profile of their transverse optical
field, yielding only phase changed solutions along the
propagation axis: the Cartesian, the circular, the elliptical,
and the parabolic cylindrical coordinate systems. For each
one of these particular coordinate systems, it is possible to
obtain as natural invariant beams the plane waves, Bessel
beams[8,9], Mathieu beams[10], and parabolic beams[11], respec-
tively. An alternative description of the NBs can be done
via the Whittaker integral[9,12],

Eðx; y; zÞ ¼ F
Z

2π

0
AðϕÞ exp½iktðx cosϕþ y sinϕÞ�dϕ;

(2)

where ϕ represents the azimuthal angle in the frequency
space, while AðϕÞ is the angular spectrum of the beam.

The transverse kt and longitudinal kz components of the
k wave vector satisfy the expression k2 ¼ k2z þ k2t . Variable
z stands for the spatial longitudinal coordinate, while x and
y stand for spatial transverse coordinates. The function
F ¼ expðikzzÞ is just a phase z-dependent term that does
not contribute to modifying the intensity of the NB in
propagation. It is important to remark that the angular
spectrum for the case of an NB is only defined on an infi-
nitely narrow ring of radius kt .

In this Letter, by solving Eq. (2), we report the gener-
ation of invariant asymmetric Mathieu (AM) beams,
which can been considered as a kind of generalization of
the asymmetric Bessel beams introduced in the seminal
works by Kotlyar et al.[13]. We demonstrate an alternative
approach to generate a kind of asymmetric beam by di-
rectly using Eq. (2), we calculate the respective variation
of power and orbital angular momentum (OAM) in a func-
tion of their ellipticity and asymmetry parameters, and
finally, we demonstrate that these beams can indeed be
generated into an experimental setup. Since the pioneer-
ing work on nondiffracting Bessel beams due to Durnin[8,9],
there has been an intense study of novel NBs and potential
applications oriented towards nonlinear optics, imaging,
and micromanipulation, among many other areas[14].
Besides the four families of NBs previously mentioned,
there are even more complex nondiffracting structures,
such as Lommel modes[15] and half-Pearcey beams[16]. In
fact, it is possible to build complex optical lattices on
demand by using relaxation procedures[12] or genetic
algorithms[17]. Nowadays, Mathieu beams have been also
used in the study of laser micromachining[18], parity-time
systems[19], and for the control of optical solitons in
photonic lattices[20]. Generating Mathieu beams involves
the following coordinates transformation to Eq. (1):
x ¼ h cosh ξ cos η, y ¼ h sinh ξ sin η, and, taking into ac-
count the limits of both η, the angular, and ξ, the radial
variables, which are [0, 2π) and ½0;∞Þ, respectively.
Parameter 2h stands for the interfocal separation. The
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solutions result from solving Eq. (1) in the form
of E ¼ ΘðηÞRðξÞ expðikzzÞ, where ΘðηÞ and RðξÞ solve
the angular and radial Mathieu equations, respectively,
given by

�
d2

dη2
þ ða − 2q cos 2ηÞ

�
ΘðηÞ ¼ 0; (3)

�
d2

dξ2
− ða − 2q cosh 2ξÞ

�
RðξÞ ¼ 0; (4)

where the ellipticity parameter is given by q ¼ h2k2t ∕4, and
a is a separation constant that results from the variable
separation method. In fact, given a q value, there are
countably several special values of a, called characteristic
values, where the Mathieu equations admit solutions with
periodic behavior of either 2π or π. In particular, when the
eigenvalues a belong to a discrete set, the solutions are of
an integral order, otherwise they are of a fractional order.
These kinds of solutions are of special physical

interest due to the continuity condition at Θðη ¼ 0Þ ¼
Θðη ¼ 2πÞ. Therefore, an even Mathieu beam can be rep-
resented as

Eeðξ; η; zÞ ¼ Cenðξ; qÞcenðη; qÞ expðikzzÞ; (5)

whereCenðξ; qÞ and cenðη; qÞ stand for the nth order of the
even radial Mathieu function and the even angular Ma-
thieu function of the first kind, respectively. Similarly,
the odd Mathieu beams can be represented by

Eoðξ; η; zÞ ¼ Senðξ; qÞsenðη; qÞ expðikzzÞ; (6)

where Senðξ; qÞ and senðη; qÞ represent the nth-order odd
radial Mathieu function and the odd Mathieu function
of the first kind, respectively. Note that even though
Mathieu beams do not carry OAM by themselves, the lin-
ear combination between even and odd Mathieu beams
with complex amplitudes do carry OAM. It is important
to remark that any idealized NB demands infinite energy
due to its infinite extension. However, it has been demon-
strated that NB can be apodized by a well-localized
function, such as a Gaussian one, and then the resulting
finite energy beam still displays invariant behavior for a
finite distance of propagation, as is the case of the
Helmholtz–Gauss waves in general[21] and the physical
version of asymmetric Bessel modes, the asymmetric
Bessel–Gauss beams[22]. The corresponding angular spec-
trum of these physically realizable finite NBs then be-
comes an annular ring with width 4∕ω0, where ω0 is a
parameter related to the Gaussian width.
Next, in order to introduce the AM beams, we propose a

modification over the angular variable ϕ in Eq. (2). We set
a new azimuth angle variable in the frequency space ϕ0 by
using the following transformation

ϕ0 ¼ ϕþ iα cosðϕþ βÞ; (7)

where α ∈ ½0;∞Þ determines the asymmetry degree of the
profile, and β ∈ ½0; 2πÞ is a rotation parameter that deter-
mines the part in which the quasi-ring is going to be
located at the breaking point of asymmetry. In the follow-
ing, we omit primes for simplicity. Next, we generate the
corresponding AM beams by using an angular spectrum,

AðϕÞ ¼ cemðϕ; qÞ � isemðϕ; qÞ; (8)

where cemðϕ; qÞ and semðϕ; qÞ stand for the even and odd
angular Mathieu function of the first kind of order m, re-
spectively. Finally, in order to recover the corresponding
complex profile of the optical field, we computationally
solve Eq. (2).

In Fig. 1, we show the profiles generated by the
proposed technique. Without loss of generality, here we
report a fourth-order AM beam with q ¼ 1, and a
third-order AM beam with q ¼ 2. Note that higher q val-
ues physically generate a higher degree of ellipticity in the
shape of the beam, while it is possible to set the location of
the maximum intensity value by only modifying the β
parameter in the respective angular spectrum. Thus, using
Eq. (7), we can control either ellipticity and angular locali-
zation of asymmetry of these Mathieu beams. By setting
α ¼ 0, note that we recover the standard and elliptically
symmetric Mathieu beams. In a similar fashion, the modi-
fication of q, α, and β parameters, which stand for change
in ellipticity, asymmetry, and localization of the

Fig. 1. Intensity of AM beams for the case of a fourth-order
q ¼ 1 and angular phase shift β parameters of (a) π∕4,
(c) π∕2, and (e) 2π∕3. A third-order AM beam with q ¼ 2 and
β parameters of (b) π∕4, (d) π∕2, and (f) 2π∕3.
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maximum, respectively, has an impact in the phase distri-
bution of the profile, as is shown in Fig. 2. Note that for the
fourth-order case, there are four optical singularities,
whose corresponding phase distribution and location are
modified in function of the β parameter. Similar behavior
is observed for the third-order case. These elliptic vortices
can be used for rotating microscopic particles[23]. The pro-
posed variable transformation given by Eq. (7) allows a
rich variety of possible asymmetric NBs, as shown in Fig. 3,
where we set β ¼ 0 and focus to change either q or α
parameters. Note that with q ¼ 0 we recover the Bessel
modes, and by modifying the q parameter, we can mimic
the Bessel asymmetric modes previously reported in the
influential works of Kotlyar et al.[13,22].
By using the method proposed here, we are able to

generate asymmetric Bessel beams, where the rings show
a small asymmetry, or half-Bessel-like beam, where an
angular sector has a null intensity, similar to the tight
focusing of an asymmetric Bessel beam[24]; or, we can even
shape profiles with more continuous distribution of light,
resembling the quasi-one-dimensional optical lattices
reported in Ref. [25].
By modifying the q parameter, note that the circular

symmetry is broken, and we observe an elliptical shape
that is similar for the circular case, and we can control
the degree of symmetry by changing the α parameter. If
we increase even more the parameter q, the continuity
along the intensity is also broken, and it is also easier

to see the localization of the corresponding elliptical vor-
tices. Finally, further increase of the q parameter moves
toward more exotic shapes. In fact, the elliptical cylindri-
cal coordinates degenerate into the Cartesian cylindrical
coordinates as q → ∞, while for q → 0, we recover the cir-
cular cylindrical coordinate system.

As a next step, we generate the corresponding physi-
cally realizable AM beams. Hence, we simply use the cor-
responding nondiffracting patterns discussed previously
but now apodized by a Gaussian function, and thus, we
obtain the corresponding Helmholtz–Gauss version of
the AM beams. We show some profiles in Fig. 4. As the
corresponding number of rings is faded by the correspond-
ing Gaussian envelope, the width of the corresponding an-
gular spectrum is also increased, as is expected[12];
however, note that the topology of the AM beams remains
similar to their nondiffracting counterpart, only being di-
minished in the amplitude that is naturally done by the
localized apodization. Thus, we report that the shape of
the beams introduced here can indeed be realizable in
an experimental setup, as is shown in Fig. 5.

In order to demonstrate the complete feasibility of these
AM beams, we use a transmissive spatial light modulator
with a resolution of 600 pixel × 800 pixel. First, an image
of the modulated pattern is sent to the spatial light modu-
lator, which is then illuminated using a collimated plane
wave generated by a He–Ne laser. It is possible to obtain
the angular spectrum of the modulated pattern at the
back focal plane of a positive lens of 500 mm focal length,
where an iris diaphragm is used to filter out all of the high
diffraction orders. The iris diaphragm is at the frontal fo-
cal plane of a second lens of 300 mm focal length, which

Fig. 2. Phase distribution of AM beams, where (a), (c), and
(e) are fourth order with ellipticity parameter q ¼ 1 and angular
phase shift given by β parameters of π∕4, π∕2, and 2π∕3, respec-
tively. (b), (d), and (f) correspond to third-order AM beams with
q ¼ 2 and β parameters of π∕4, π∕2, and 2π∕3, respectively.

Fig. 3. Intensity of AM beams. (a) q ¼ 0.01, (b) q ¼ 2, (c) q ¼ 5,
and (d) q ¼ 15. In all cases, from top to bottom, α ¼ 0, α ¼ 0.1,
α ¼ 0.5, and α ¼ 1.

COL 16(12), 122601(2018) CHINESE OPTICS LETTERS December 10, 2018

122601-3



finally allows the generation of the required invariant
field. The diverse intensity profiles of the AM beams were
recorded by using a CCD with 1280 pixel × 1024 pixel at
several planes along the corresponding axis of the evolu-
tion of 20 cm, where the corresponding Rayleigh range for
an equivalent Gaussian beam is of the order of 5 cm. A
schematic of the experimental setup used is shown in
Fig. 6. Next, we show some profiles experimentally gener-
ated for the case of a fourth-order AM beam. We corrobo-
rate that the propagation of these beams indeed remains
invariant, as is depicted in Fig. 6. Note that the Gaussian
envelope must have a considerably large width in order to
conserve the nondiffracting behavior of the beam. As an
example, if the width is relatively short, there will be a
rotation in the intensity profile, as similarly reported
for the case of asymmetric Gaussian vortex beams[26].
Next, we study the behavior of some important physical

parameters in the function of the ellipticity and

asymmetry. We start by calculating the power or energy
flow of the beam, which for a complex scalar optical field is
obtained by P ¼ R jEj2d r![5,22]. We report in Fig. 7 the cor-
responding behavior of P in the function of the α param-
eter. Note that for low q values, the function reported
indeed shows a minimum value, while for larger q values,
the function monotonically decreases. Similarly, for a par-
ticular fixed α value, the corresponding q value, where the
power achieves its maximum value, can be
obtained for either the higher q values, as for the case
of α ¼ 0.1, or in contrast, the maximum power can be

Fig. 4. Intensity of asymmetric Gaussian–Mathieu beams with
the following parameters: (a) q ¼ 0.01, (b) q ¼ 2, (c) q ¼ 5,
and (d) q ¼ 15. In all cases, from top to bottom, α ¼ 0,
α ¼ 0.1, α ¼ 0.5, and α ¼ 1.

Fig. 5. Experimental setup. From left to right: He–Ne laser at
633 nm, 12 mW; BE, beam expander, 10×; SLM, spatial light
modulator, LC2002; L1 and L2, lenses; D, diaphragm; CCD,
Thorlabs CCD.

Fig. 6. Experimental fourth-order AM beam obtained with
parameters (a) α ¼ 1, (b) α ¼ 1.67, (c) α ¼ 5, (d) α ¼ 1.14,
(e) α ¼ 1.19, and (f) α ¼ 1.25. The size of the transverse display
area is 5 mm× 3 mm. (g) Propagation of the AM beam in the
x–z plane.

Fig. 7. Power of asymmetric Gaussian–Mathieu beams as a
function of the α parameter at different ellipticities given by
the q parameter.
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obtained for the lower q values, as in the case of α ¼ 0.5.
Therefore, the overall power distribution in the function of
the q and α parameters is in general quite complex, and it
must be studied for some particular conditions, as is gen-
erally done in previous works, where the applications of
the Mathieu functions are studied[19,20].
We proceed to calculate the OAM projection

onto the optical axis, which is defined by Jz ¼
Im

R
E�ð r!× ∇EÞd r!. The corresponding values obtained

are shown in Fig. 8. Note that similar to the power case,
the maximum value of the OAM is a function of the par-
ticular combination of q and α parameters. For the case of
low q values, the variation of the OAM is lower than for
the case of high q values, where the variation can be quite
considerable. Note that around α ≈ 0.5, the OAM is quite
similar; thus, it is possible to find AM beams that, in spite
of their different transverse structure, can have either sim-
ilar power or OAM. This fact might be useful in the ex-
ploration of the transformation of modes due to the
corresponding conservation laws for power and OAM.
For q → 0, we recover the corresponding angular momen-
tum for the scenario of a Bessel–Gauss beam. Note that
even for almost q ≈ 0 and α ¼ 0, the corresponding
OAM of the AM beams is different from zero; the latter
is because we generate AM beams using a superposition
of odd and even AM modes. In particular, it is possible
to generate AM beams by Eq. (7), where the OAM is in-
deed zero, by simply taking their pure real or imaginary
parts. The function of the OAM reported here is in con-
trast for the case of asymmetric Laguerre modes[27], where
the corresponding OAM always increases in a quadratic
fashion as a function of the asymmetry parameter. Re-
cently, the study of elliptic Gaussian optical vortices[28]

has gained interest due to the ellipticity parameter that
can be used for controlling the OAM[29], and hence, opens
up the possibility of being useful in future optical commu-
nications systems.

In conclusion, in this Letter, we report the generation of
AM beams that can be characterized by three physical
parameters: α stands for the degree of asymmetry, β indi-
cates the angular position where the symmetry is broken,
and q characterizes the degree of ellipticity. We define
these NBs by proposing a simple but very useful angular
spectrum. We demonstrate the feasibility of these asym-
metric beams with an experimental setup, and we report
the corresponding power and OAM for diverse combina-
tions of q and α parameters.We hope that these AM beams
can be used in diverse fields, such as micro-manipulation,
Bose–Einstein condensates, and soliton routing.
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