• Chinese Journal of Quantum Electronics
  • Vol. 34, Issue 1, 123 (2017)
Xiaopei TAN*, Zhongchao WEI, Ruisheng LIANG, Yajun YI, Xiaomeng ZHANG, Nianfa ZHONG, and Xianping LI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2017.01.020 Cite this Article
    TAN Xiaopei, WEI Zhongchao, LIANG Ruisheng, YI Yajun, ZHANG Xiaomeng, ZHONG Nianfa, LI Xianping. Electromagnetically induced transparency and slow light effect based on symmetric stub waveguides and nanodisks[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 123 Copy Citation Text show less
    References

    [1] Fedyanin D Y, Krasavin A V, Arsenin A V, et al. Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits[J]. Nano Letters, 2012, 12(5): 2459-2463.

    [2] Lu L Y, Li F, Xu M, et al. Mode-selective hybrid plasmonic Bragg grating reflector[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1765-1767.

    [3] Daneshmandi O, Alighanbari A, Gharavi A. Characteristics of new hybrid plasmonic Bragg reflectors based on sinusoidal and triangular gratings[J]. Plasmonics, 2015, 10(1): 233-239.

    [4] Lu H, Liu X M, et al. Plasmonic nanosensor based on Fano resonance in waveguide coupled resonators[J]. Opt. Lett., 2012, 37(18): 3780-3782.

    [5] Wu T S, Liu Y M, Yu Z Y, et al. The sensing characteristics of plasmonic waveguide with a ring resonator[J]. Opt. Expr., 2014, 22(7): 7669-7677.

    [6] Lu H, Liu X M, Wang L, et al. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator[J]. Opt. Expr., 2011, 19(4): 2910-2915.

    [7] Zhan G Z, Liang R S, Liang H T, et al. Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities[J]. Opt. Expr., 2014, 22(8): 9912-9919.

    [8] Gong Y, Liu X, Wang L. High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci sequence gratings[J]. Opt. Lett., 2010, 35(3): 285-287.

    [11] Wu Jianxiong, Feng Mingneng, Pang Wei, et al. The transmission of quasi-discrete solitons in resonant waveguide arrays activated by the electromagnetically induced transparency[J]. Journal of Nonlinear Optical Physics and Materials, 2011, 20(2): 193-203.

    [12] Yan D, Cui C L, Liu Y M, et al. Normal and abnormal nonlinear electromagnetically induced transparency due to dipole blockade of Rydberg excitation[J]. Phys. Rev. A, 2013, 87(2): 023827.

    [13] Hatta A M, Kamli A A, Al-Hagan O A, et al. Slow light with electromagnetically induced transparency in optical fibre[J]. Journal of Physics B-Atomic Molecular and Optical Physics, 2015, 48(15): 155502.

    [14] Wang J Q, Yuan B H, Fan C Z, et al. A novel planar metamaterial design for electromagnetically induced transparency and slow light[J]. Opt. Expr., 2013, 21(21): 25159-25166.

    [15] Haus H A, Huang W P. Coupled-mode theory[J]. Proc. IEEE, 1991, 79(10): 1505-1518.

    [16] Tang B, Dai L, Jiang C. Electromagnetic response of a compound plasmonic-dielectric system with coupled-grating-induced transparency[J]. Phys. Lett. A, 2012, 37(14): 1234-1238.

    [17] Haus H A. Waves and Fields in Optoelectronics[M]. New Jersey: Prentice-Hall, 1984.

    [18] Dai L, Liu Y, Jiang C. Plasmonic-dielectric compound grating with high group-index and transmission[J]. Opt. Expr., 2011, 19(2): 1461-1469.

    TAN Xiaopei, WEI Zhongchao, LIANG Ruisheng, YI Yajun, ZHANG Xiaomeng, ZHONG Nianfa, LI Xianping. Electromagnetically induced transparency and slow light effect based on symmetric stub waveguides and nanodisks[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 123
    Download Citation