[1] Y. V. Rodionov, O. I. Keppen, and M. V. Sukhacheva, “A photometric assay for ethanol,” Applied Biochemistry and Microbiology, 2002, 38(4): 395-396.
[2] Y. S. Chen and J. H. Huang, “Arrayed CNT-Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol,” Biosens Bioelectron, 2010, 26(1): 207-212.
[3] L. V. Shkotova, A. P. Soldatkin, M. V. Gonchar, W. Schuhmann, and S. V. Dzyadevych, “Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film,” Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006, 26(2-3): 411-414.
[4] M. Schuetz, J. Bufton, and C. R. Prasad, “A mid-IR DIAL system using interband cascade laser diodes,” in Proceeding of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Baltimore, Maryland, USA, 2007, pp. 1-2.
[5] J. Kubicki, J. Mlynczak, and K. Kopczynski, “Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins,” Journal of Applied Remote Sensing, 2013, 7(8): 1-13.
[6] P. O. Idwasi, G. W. Small, R. J. Combs, R. B. Knapp, and R. T. Kroutil, “Multiple filtering strategy for the automated detection of ethanol by passive Fourier transform infrared spectrometry,” Applied Spectroscopy, 2001, 55(11): 1544-1552.
[7] T. Tarumi, G. W. Small, R. J. Combs, and R. T. Kroutil, “Remote detection of heated ethanol plumes by airborne passive Fourier transform infrared spectrometry,” Applied Spectroscopy, 2003, 57(11): 1432-1441.
[8] J. M. Garrigues, A. Perez-Ponce, S. Garrigues, and M. D. L. Guardia, “Direct determination of ethanol and methanol in liquid samples by means of vapor phase-Fourier transform infrared spectrometry,” Vibrational Spectroscopy, 1997, 15(2): 219-228.
[9] A. Nadezhdinskii, A. Berezin, Y. Bugoslavsky, O. Ershov, and V. Kutnyak, “Application of near-IR diode lasers for measurement of ethanol vapor,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 1999, 55(10): 2049-2055.
[10] S. Jie, Q. J. Tang, C. Cheng, and Z. Y. Li, “Remote detection of alcohol concentration in vehicle based on TDLAS,” in Proceeding of Symposium on Photonics & Optoelectronic, Chengdu, China, 2010, pp. 1-3.
[11] H. Geng, J. G. Liu, Y. J. Zhang, R. F. Kan, Z. Y. Xu, L. Yao, et al., “Ethanol vapor measurement based on tunable diode laser absorption spectroscopy,” Acta Physica Sinica, 2014, 63(4): 114-119.
[12] J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Measurement Science and Technology, 2103, 24(1): 012004-1-012004-95.
[13] C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors, 2009, 9(10): 8230-8262.
[14] P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Nahle, M. Fischer, et al., “Detection of propane using tunable diode laser spectroscopy at 3.37 μm,” Applied Physics B, 2012, 108(1): 183-188.
[15] L. F. Zhang, F. Wang, L. B. Yu, J. H. Yan, and K. F. Cen, “The research for trace ammonia escape monitoring system based on tunable diode laser absorption spectroscopy,” Spectroscopy and Spectral Analysis, 2015, 35(6): 1639-1642.
[16] A. K. Andersson, J. Kron, M. Castren, A. M. Athlin, B. Hok, and L. Wiklund, “Assessment of the breath alcohol concentration in emergency care patients with different level of consciousness,” Scandinavian Journal of Trauma Resuscitation & Emergency Medicine, 2015, 23(1): 1-9.
[17] F. Capasso, “High-performance midinfrared quantum cascade lasers,” Optical Engineering, 2010, 49(11): 111102-1-111102-9.
[18] I. Vurgaftman, M. Kim, C. S. Kim, W. W. Bewley, C. L. Canedy, J. R. Lindle, et al., “Challenges for mid-IR interband cascade lasers,” Novel in-Plane Semiconductor Lasers Ix, 2010, 7616(1): 82-88.
[19] C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sensors and Actuators B-Chemical, 2016, 232: 188-194.
[20] L. Dong, F. K. Tittel, C. G. Li, N. P. Sanchez, H. P. Wu, C. T. Zheng, et al., “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Optics Express, 2016, 24(6): 528-535.
[21] J. Jagerska, B. Tuzson, H. Looser, A. Bismuto, J. Faist, H. Prinz, et al., “Highly sensitive and fast detection of propane-butane using a 3 μm quantum cascade laser,” Applied Optics, 2013, 52(19): 4613-4619.
[22] P. Geiser, “New opportunities in mid-infrared emission control,” Sensors (Basel), 2015, 15(9): 22724-22736.
[23] J. Reid and D. Labrie, “2nd-harmonic detection with tunable diode-lasers-comparison of experiment and theory,” Applied Physics B-Photophysics and Laser Chemistry, 1981, 26(3): 203-210.
[24] T. R. S. Hayden and G. B. Rieker, “Large amplitude wavelength modulation spectroscopy for sensitive measurements of broad absorbers,” Optics Express, 2016, 24(24): 27910-27921.