• Laser & Optoelectronics Progress
  • Vol. 56, Issue 12, 120501 (2019)
Kang Wang1, Yu Jin1、*, Yuwei Liu1, Zhixiang Li1, Xin Luo1, Zhijun Wu1, and Chunping Xiang2、**
Author Affiliations
  • 1 Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China
  • 2 Information Engineering College, Jimei University, Xiamen, Fujian 361021, China
  • show less
    DOI: 10.3788/LOP56.120501 Cite this Article Set citation alerts
    Kang Wang, Yu Jin, Yuwei Liu, Zhixiang Li, Xin Luo, Zhijun Wu, Chunping Xiang. Preparation and Characterization of Multi-Morphological and Multi-Periodical Micro-Nano Composite Structures[J]. Laser & Optoelectronics Progress, 2019, 56(12): 120501 Copy Citation Text show less
    References

    [1] Campbell M, Sharp D N, Harrison M T et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 404, 53-56(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=909785

    [2] Wu D, Chen Q D, Niu L G et al. 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision[J]. IEEE Photonics Technology Letters, 21, 1535-1537(2009).

    [3] Jin Y, Feng J, Zhang X L et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Advanced Materials, 24, 1187-1191(2012). http://www.ncbi.nlm.nih.gov/pubmed/22278992/

    [4] Jin Y, Feng J, Wang Y H et al. Improved performance of ITO-free organic solar cells using a low-workfunction and periodically corrugated metallic cathode[J]. IEEE Photonics Journal, 4, 1737-1743(2012). http://ieeexplore.ieee.org/document/6280588/

    [5] Wu D, Chen Q D, Yao J et al. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting[J]. Applied Physics Letters, 96, 053704(2010). http://scitation.aip.org/content/aip/journal/apl/96/5/10.1063/1.3297881

    [6] Wood R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4, 396-402(1902). http://www.emeraldinsight.com/servlet/linkout?suffix=b63&dbid=16&doi=10.1108%2FSR-01-2012-604&key=10.1080%2F14786440209462857

    [7] Fägerstam L G, Frostell-Karlsson Å, Karlsson R et al. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis[J]. Journal of Chromatography A, 597, 397-410(1992). http://europepmc.org/abstract/med/1517343

    [8] Cao J G, Zhou Y X. Polarization modulation of terahertz wave by graphene metamaterial with grating structure[J]. Laser & Optoelectronics Progress, 55, 092501(2018).

    [9] Li W, Liu C, Lü J W et al. LSPR properties of metal-compound-graphene composite nanoarray structure[J]. Laser & Optoelectronics Progress., 55, 082401(2018).

    [10] Bai Y F, Fan J, Zou Y G et al. Fabrication of gratings used in 976 nm distributed feedback lasers based on laser interference lithography[J]. Laser & Optoelectronics Progress, 54, 120501(2017).

    [11] Tseng A A, Chen K, Chen C D et al. Electron beam lithography in nanoscale fabrication: recent development[J]. IEEE Transactions on Electronics Packaging Manufacturing, 26, 141-149(2003). http://ieeexplore.ieee.org/iel5/6104/27729/01236879.pdf

    [12] Fujita J, Ohnishi Y, Ochiai Y et al. Ultrahigh resolution of calixarene negative resist in electron beam lithography[J]. Applied Physics Letters, 68, 1297-1299(1996). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4888838

    [13] Watt F. Bettiol A A,van Kan J A, et al. Ion beam lithography and nanofabrication: a review[J]. International Journal of Nanoscience, 4, 269-286(2005).

    [14] Springham S V, Osipowicz T, Sanchez J L et al. Micromachining using deep ion beam lithography[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 130, 155-159(1997). http://www.sciencedirect.com/science/article/pii/S0168583X97002759

    [15] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers[J]. Applied Physics Letters, 67, 3114-3116(1995). http://jmicro.oxfordjournals.org/external-ref?access_num=10.1063/1.114851&link_type=DOI

    [16] Lee J H, Takafuji M, Sagawa T et al. Reappraising the validity of poly(3-hexylthiophene) nanostructures in interdigitated bilayer organic solar cells[J]. Solar Energy Materials and Solar Cells, 147, 68-74(2016).

    [17] Abid M I, Wang L, Chen Q D et al. Angle-multiplexed optical printing of biomimetic hierarchical 3D textures[J]. Laser & Photonics Reviews, 11, 1600187(2017). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201600187/full

    [18] Guo L. Nanoimprint lithography: methods and material requirements[J]. Advanced Materials, 19, 495-513(2007). http://www.tandfonline.com/servlet/linkout?suffix=CIT0015&dbid=16&doi=10.1080%2F23746149.2018.1445558&key=10.1002%2Fadma.200600882

    [19] Lee O P, Yiu A T, Beaujuge P M. et al. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly[J]. Advanced Materials, 23, 5359-5363(2011). http://europepmc.org/abstract/med/22021084

    [20] KondoT, YamasakiK, JuodkazisS, et al. Three-dimensional microfabrication by femtosecond pulses in dielectrics[J]. Thin Solid Films, 2004, 453/454: 550-556.

    [21] Shoji S, Kawata S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin[J]. Applied Physics Letters, 76, 2668-2670(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4903527

    [22] Kawamura K I, Sarukura N, Hirano M et al. Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses[J]. Applied Physics Letters, 79, 1228-1230(2001). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=4895851

    [23] Jin Y, Feng J, Zhang X L et al. Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer[J]. Applied Physics Letters, 106, 223303(2015). http://scitation.aip.org/content/aip/journal/apl/106/22/10.1063/1.4922191

    [24] Ito T, Okazaki S. Pushing the limits of lithography[J]. Nature, 406, 1027-1031(2000). http://www.nature.com/nature/journal/v406/n6799/full/4061027a0.html

    [25] Jin Y, Feng J, Xu M et al. Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes[J]. Advanced Optical Materials, 1, 809-813(2013). http://onlinelibrary.wiley.com/doi/10.1002/adom.201300223/full

    [26] Jin Y, Zou D H, Wang K et al. Optimization of period and thickness of the corrugated Ag cathode for efficient cross coupling between SPP and microcavity modes in top-emitting OLEDs[J]. Optical Materials Express, 7, 2096-2101(2017). http://www.onacademic.com/detail/journal_1000040491356710_9d0b.html

    [27] Jin Y, Feng J, Zhang X L et al. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode[J]. Applied Physics Letters, 101, 163303(2012). http://scitation.aip.org/content/aip/journal/apl/101/16/10.1063/1.4761947

    [28] Löper P, Stuckelberger M, Niesen B et al. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry[J]. The Journal of Physical Chemistry Letters, 6, 66-71(2015). http://pubs.acs.org/doi/abs/10.1021/jz502471h

    Kang Wang, Yu Jin, Yuwei Liu, Zhixiang Li, Xin Luo, Zhijun Wu, Chunping Xiang. Preparation and Characterization of Multi-Morphological and Multi-Periodical Micro-Nano Composite Structures[J]. Laser & Optoelectronics Progress, 2019, 56(12): 120501
    Download Citation