• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021425 (2022)
Jia-Hao HUANG1、2 and Gang-Yi XU1、3、*
Author Affiliations
  • 1Key laboratory of Infrared imaging materials and detectors,Shanghai Institute of technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.012 Cite this Article
    Jia-Hao HUANG, Gang-Yi XU. Photonic and electric control in terahertz quantum cascade lasers:Review[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021425 Copy Citation Text show less
    References

    [1] R Köhler, A Tredicucci, F Beltram et al. Terahertz semiconductor-heterostructure laser. Nature, 417, 156-159(2002).

    [2] W L Chan, J Deibel, D M Mittleman et al. Imaging with terahertz radiation. Rep. Progr. Phys, 70, 1325-1379(2007).

    [3] S M Kim, F Hatami, J S Harris, et al. Biomedical terahertz imaging with a quantum cascade laser. Appl. Phys. Lett, 88, 81-83(2006).

    [4] K L Nguyen, M L Johns, L F Gladden et al. Three-dimensional imaging with a terahertz quantum cascade laser. Opt. Express, 14, 2123-2129(2006).

    [5] W M Lee Alan, Q Qin, S Kumar et al. Real-time terahertz imaging over a standoff distance (>25meters). Appl. Phys. Lett, 89, 4-7(2006).

    [6] Q Hu. Terahertz quantum cascade lasers and video-rate THz imaging. IEEE Trans. Terahertz Sci. Technol, 2, 120-130(2009).

    [7] D M Mittleman, R H Jacobsen, R Neelamani et al. Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B Lasers Opt, 67, 379-390(1998).

    [8] J F Federici, B Schulkin, F Huang et al. THz imaging and sensing for security applications—Explosives, weapons and drugs. Semicond. Sci. Technol, 20, S266-S280(2005).

    [9] Y Ren, J N Hovenier, R Higgins et al. High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around3.5 THz. Appl. Phys. Lett, 98, 231109(2011).

    [10] S Koenig, D Lopez-Diaz, J Antes et al. Wireless sub-THz communication system with high data rate. Nature Photon, 7, 977-981(2013).

    [11] T Kleine-Ostmann, T Nagatsuma. A review on terahertz communications research. Infrared. Millim. THz Waves, 32, 143-171(2011).

    [12] Z Chen, Z Y Tan, Y J Ha et al. Wireless communication demonstration at4.1 THz using quantum cascade laser and quantum well photodetector. Electron. Lett, 47, 1002-1004(2011).

    [13] Y Ren, J N Hovenier, R Higgins et al. Terahertz heterodyne spectrometer using a quantum cascade laser. Appl. Phys. Lett, 97, 10-13(2010).

    [14] J L Kloosterman, D J Hayton, Y Ren et al. Hot electron bolometer heterodyne receiver with a4.7-THz quantum cascade laser as a local oscillator. Appl. Phys. Lett, 102, 011123(2013).

    [15] D J Hayton, J L Kloosterman, Y Ren et al. A 4.7 THz heterodyne receiver for a balloon borne telescope, 9153, 91531R(2014).

    [16] DT Nguyen, F Simoens, J L Ouvrier-Buffet et al. Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements. IEEE Trans. Terahertz Sci. Technol, 2, 299-305(2012).

    [17] H Richter, M Wienold, L Schrottke et al. 4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA. IEEE Trans. Terahertz Sci. Technol, 5, 539-545(2015).

    [18] B S Williams. Terahertz quantum-cascade lasers. Nature Photon, 1, 517-525(2007).

    [19] J Faist, M Beck, T Aellen et al. Quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett, 78, 147-149(2001).

    [20] G Scalari, L Ajili, J Faist et al. (λ Far-infrared87μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl. Phys. Lett, 82, 3165-3167(2003).

    [21] B Xu, Q Hu, M R Melloch. Electrically pumped tunable terahertz emitter based on intersubband transition. Appl. Phys. Lett, 71, 440-442(1997).

    [22] B S Williams, B Xu, Q Hu et al. Narrow-linewidth terahertz intersubband emission from three-level systems. Appl. Phys. Lett, 75, 2927-2929(1999).

    [23] S Fathololoumi, E Dupont, C W I Chan et al. Terahertz quantum cascade lasers operating up to similar to200K with optimized oscillator strength and improved injection tunneling. Opt. Express, 20, 3866-3876(2012).

    [24] Khalatpour Ali, A K Paulsen, C Deimert et al. High-power portable terahertz laser systems. Nature Photon, 15, 16(2020).

    [25] B S Williams, S Kumar, Q Hu et al. Operation of terahertz quantum-cascade lasers at164K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express, 13, 3331-3339(2005).

    [26] B S Williams, S Kumar, Q Hu et al. High-power terahertz quantum cascade lasers. Electron. Lett, 42, 89-91(2006).

    [27] G Scalari, N Hoyler, M Giovannini et al. Terahertz bound-to-continuum quantum cascade lasers based on optical-phonon scattering extraction. Appl. Phys. Lett, 86, 181101(2005).

    [28] S Kohen, B S Williams, Q Hu. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. Appl. Phys, 97, 053106(2005).

    [29] M I Amanti, M Fischer, G Scalari et al. Low-divergence single-mode terahertz quantum cascade laser. Nature Photon, 3, 586-590(2009).

    [30] Khalatpour Ali, J L Reno, N P Kherani et al. Unidirectional photonic wire laser. Nature Photon, 11, 555(2017).

    [31] Khalatpour Ali, J L Reno, Q Hu et al. Phase-locked photonic wire lasers by π coupling. Nature Photon, 13, 47(2019).

    [32] S Biasco, K Garrasi, F Castellano et al. Continuous-wave highly-efficient low-divergence terahertz wire lasers. Nat. Commun, 9, 1122(2018).

    [33] G Y Xu, R Colombelli, S Khanna et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nat. Commun, 3, 952(2012).

    [34] G Y Xu, L H Li, N Isac et al. Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range. Appl. Phys. Lett, 104, 091112(2014).

    [35] H Wenzel, S Schwertfeger, A Klehr et al. High peak power optical pulses generated with a monolithic master-oscillator power amplifier. Opt. Lett, 37, 1826(2012).

    [36] O’Brien , D F Welch, R Parke et al. Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier. IEEE J. Quantum Electron, 29, 2052(1993).

    [37] M Troccoli, C Gmachl, F Capasso et al. (λ≈ Mid-infrared7.4 μm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality. Appl. Phys. Lett, 80, 4103(2002).

    [38] P Rauter, S Menzel, A K Goyal et al. Master-oscillator power-amplifier quantum cascade laser array. Appl. Phys. Lett, 101, 261117(2012).

    [39] B Hinkov, M Beck, E Gini et al. Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power. Opt. Express, 21, 19180(2013).

    [40] H Zhu, F F Wang, Q Yan et al. Terahertz master-oscillator power-amplifier quantum cascade lasers. Appl. Phys. Lett, 109, 231105(2016).

    [41] C R Yu, H Zhu, F F Wang et al. Highly efficient power extraction in terahertz quantum cascade laser via a grating coupler. Appl. Phys. Lett, 113, 121114(2018).

    [42] H Zhu, H Q Zhu, F F Wang et al. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity. Opt. Express, 26, 1942-1953(2018).

    [43] H Q Zhu, H Zhu, C R Yu et al. Modeling and improving the output power of terahertz master-oscillator power-amplifier quantum cascade lasers. Opt. Express, 28, 23239-23250(2020).

    [44] Y Jin, L Gao, J Chen et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings. Nat. Cummon, 9, 1407(2018).

    [45] Y Jin, J L Reno, S Kumar et al. Phase-locked terahertz plasmonic laser array with2W output power in a single spectral mode. Optica, 7, 708-715(2020).

    [46] R J Zhou, B Ibarra-Escamilla, J W Haus et al. Fiber laser generating switchable radially and azimuthally polarized beams with140mW output power at 1.6 μm wavelength. Appl. Phys. Lett, 95, 191111(2009).

    [47] N K Grady, J E Heyes, D R Chowdhury et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [48] Y Z Cheng, W Withayachumnankul, A Upadhyay et al. Ultrabroadband reflective polarization convertor for terahertz waves. Appl. Phys. Lett, 105, 181111(2014).

    [49] R H Fan, Y Zhou, X P Ren et al. Freely tunable broadband polarization rotator for terahertz waves. Adv. Mater, 27, 1201-1206(2015).

    [50] J Lin, J P B Mueller, Q Wang et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [51] P Rauter, J Lin, P Genevet et al. Electrically pumped semiconductor laser with monolithic control of circular polarization. PNAS, 111, E5623-E5632(2014).

    [52] L Y Xu, D G Chen, C A Curwen et al. Metasurface quantum-cascade laser with electrically switchable polarization. Optica, 4, 468-475(2017).

    [53] G Z Liang, Y Q Zeng, X N Hu et al. Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization. ACS Photonics, 4, 517-524(2017).

    [54] H Q Zhu, H Zhu, K Wang et al. Terahertz master-oscillator power-amplifier quantum Cascade laser with controllable polarization. Appl. Phys. Lett, 117, 021103(2020).

    [55] L Mahler, A Tredicucci, F Beltram et al. Tuning a distributed feedback laser with a coupled microcavity. Opt. Express, 18, 19185-19191(2010).

    [56] Q Qin, B S Williams, S Kumar et al. Tuning a terahertz wire laser. Nature Photon, 3, 732-737(2009).

    [57] C A Curwen, J L Reno, B S Williams et al. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL. Nature Photon, 13, 855(2019).

    [58] S Mittal, E Waks. Quantum cascade laser lives on the edge. Nature, 578, 219-220(2020).

    [59] Y H Yang, Y Yamagami, X B Yu et al. Terahertz topological photonics for on-chip communication. Nature Photon, 14, 446(2020).

    [60] M Brandstetter, M Liertzer, C Deutsch et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun, 5, 4034(2014).

    [61] Y Yang, D Burghoff, D J Hayton et al. Terahertz multiheterodyne spectroscopy using laser frequency combs. Optica, 3, 499-502(2016).

    [62] M Rosch, G Scalari, G Villares et al. On-chip, self-detected terahertz dual-comb source. Appl. Phys. Lett, 108, 171104(2016).

    [63] Y R Zhao, Z P Li, K Zhou et al. Active Stabilization of Terahertz Semiconductor Dual-Comb Laser Sources Employing a Phase Locking Technique. Laser Photonics Rev, 15, 2000498(2021).

    [64] H Li, M Yan, W J Wan et al. Graphene-Coupled Terahertz Semiconductor Lasers for Enhanced Passive Frequency Comb Operation. Adv. Sci, 6, 1900460(2019).

    [65] H Li, Z P Li, W J Wan et al. Toward Compact and Real-Time Terahertz Dual-Comb Spectroscopy Employing a Self-Detection Scheme. ACS Photonics, 7, 49-56(2020).

    Jia-Hao HUANG, Gang-Yi XU. Photonic and electric control in terahertz quantum cascade lasers:Review[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021425
    Download Citation