• Journal of Inorganic Materials
  • Vol. 36, Issue 6, 629 (2021)
Wenwen LIU1, Zhilei HU1, Li WANG1, Mengsha CAO1, Jing ZHANG1, Jing ZHANG1, Shuai ZHANG1、*, Ningyi YUAN1, and Jianning DING2、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Jiangsu Photovoltaic Science and Engineering Collaborative Innovation Center, Changzhou university, Changzhou 213164, China
  • 22. Micro Center for Science and Technology, Jiangsu University, Zhenjiang 212013, China
  • show less
    DOI: 10.15541/jim20200495 Cite this Article
    Wenwen LIU, Zhilei HU, Li WANG, Mengsha CAO, Jing ZHANG, Jing ZHANG, Shuai ZHANG, Ningyi YUAN, Jianning DING. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell[J]. Journal of Inorganic Materials, 2021, 36(6): 629 Copy Citation Text show less
    References

    [1] A KOJIMA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

    [2] . Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html

    [3] A GREEN M. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt: Res. Appl., 17, 183-189(2009).

    [4] H XIONG, X ZHANG B, W JIA et al. Polymer PVP additive for improving stability of perovskite solar cells. J. Inorg. Mater., 34, 96-102(2019).

    [5] W YU S, W ZHAO Z, J ZHAO J et al. Research progress in novel in-situ integrative photovoltaic-storage tandem cells. J. Inorg. Mater., 35, 623-632(2020).

    [6] Y CHU Z, L LI G, H JIANG Z et al. Recent progress in high-quality perovskite CH3NH3PbI3 single crystal. J. Inorg. Mater., 33, 1035-1045(2018).

    [7] V PATIL J, S MALI S, K HONG C. A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells. Nanoscale, 11, 21824-21833(2019).

    [8] S ZHANG, T LU Y, C LIN B et al. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance. Sol. Energy Mat. Sol. C, 170, 178-186(2017).

    [9] P ZHENG X, B CHEN, J DAI et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2, 17102(2017).

    [10] J DE ROO, M IBÁÑEZ, P GEIREGAT et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 10, 2071-2081(2016).

    [11] S YANG, J DAI, H YU Z et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 141, 5781-5787(2019).

    [12] L BARLY I, W DEQUILETTES D, et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photonics, 12, 355-361(2018).

    [13] J YANG, C LIU, C CAI et al. High performance perovskite solar cells with excellent humidity and thermo stability via fluorinated perylenediimide. Adv. Energy. Mater., 9, 1900198(2019).

    [14] S ZHANG, L HU Z, J ZHANG et al. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability. J. Power Sources, 438, 226987(2019).

    [15] H WANG H, W WANG Z, Z YANG et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater., 32, 2000865(2020).

    [16] Q NIU T, J LU, R MUNIR et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 30, 1706576(2018).

    [17] S DE WOLF, J HOLOVSKY, J MOON S et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 5, 1035-1039(2014).

    [18] D STRANKS S, E EPERON G, G GRANCINI et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341-344(2013).

    [19] H CHEN J, J ZUO L, Z ZHANG Y et al. High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater., 8, 1800438(2018).

    [20] M WHEELER L, M SANEHIRA E, R MARSHALL A et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc., 140, 10504-10513(2018).

    [21] H IM J, H JANG I, N PELLET et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol., 9, 927-932(2014).

    [22] Y LIU, B MONOJIT, R LAWRENCE A et al. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy Mater., 6, 1501606(2015).

    [23] H WU Y, P WANG, H ZHANG W. Heterojunction engineering for high efficiency cesium formamidinium double-cation lead halide perovskite solar cells. ChemSusChem, 11, 837-842(2018).

    [24] Y HOU, Y DU X, S SIMON et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 358, 1192-1197(2017).

    [25] J ZHANG, Q SUN, Y CHEN Q et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater, 29, 1900484(2019).

    [26] Y CHEN H, Y ZHAN, Y XU G et al. Organic n-type molecule: managing the electronic states of bulk perovskite for high-performance photovoltaics. Adv. Funct. Mater., 120, 8267-8302(2020).

    [27] W DEQUILETTES D, M VORPAHL S, D STRANKS S et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 348, 683-686(2015).

    [28] L WANG, H LIU, W LIU C et al. Approaching optimal hole transport layers by organic monomolecular strategy for efficient inverted perovskite solar cells. J. Mater. Chem. A, 4, 1-21(2020).

    [29] N HOU M, Z XU Y, B ZHOU et al. Aryl diammonium iodide passivation for efficient and stable hybrid organ-inorganic perovskite solar cells. Adv. Funct. Mater., 30, 2002366(2020).

    [30] Y SON D, G KIM S, Y SEO J et al. Universal approach toward hysteresis free perovskite solar cell via defect engineering. J. Am. Chem. Soc., 140, 1358-1364(2018).

    [31] A GUERRERO, , I MORA-SERO et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C, 120, 8023-8032(2016).

    [32] Q WANG, E MOSER J, M GRTZEL. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B, 109, 14945-53(2005).

    [33] S ZHANG, Y DONG G, C LIN B et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells. J. Power Sources, 277, 52-58(2015).

    [34] S ZHANG, Y DONG G, C LIN B et al. Performance enhancement of aqueous dye-sensitized solar cells via introduction of a quasi- solid-state electrolyte with an inverse opal structure. Sol Energy, 127, 19-27(2016).

    [35] A YANG J, D XIAO A, S XIE L et al. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta, 338, 135697(2020).

    Wenwen LIU, Zhilei HU, Li WANG, Mengsha CAO, Jing ZHANG, Jing ZHANG, Shuai ZHANG, Ningyi YUAN, Jianning DING. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell[J]. Journal of Inorganic Materials, 2021, 36(6): 629
    Download Citation