• Laser & Optoelectronics Progress
  • Vol. 57, Issue 3, 032301 (2020)
Li Liu, Jinlong Yu*, Ju Wang, Chuang Ma, Tianyuan Xie, Yang Yu, Jie Fang, and Haitao Peng
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP57.032301 Cite this Article Set citation alerts
    Li Liu, Jinlong Yu, Ju Wang, Chuang Ma, Tianyuan Xie, Yang Yu, Jie Fang, Haitao Peng. Linear Frequency-Modulated Signal Generation Based on Optoelectronic Oscillator Combined with Electrical Frequency-Selected Cavity[J]. Laser & Optoelectronics Progress, 2020, 57(3): 032301 Copy Citation Text show less
    References

    [1] Xu N, Liu L R, Lu W. Compensation of nonlinear chirp in synthetic aperture imaging ladar[J]. Laser & Optoelectronics Progress, 46, 22-27(2009).

    [2] Zeng Z Y, Zhang X Y, Jia X. Measurement of linear frequency-modulated continuous-wave laser radar[J]. Laser & Optoelectronics Progress, 48, 022802(2011).

    [3] Ji N K, Zhang F M, Qu X H et al. Ranging technology for frequency modulated continuous wave laser based on phase difference frequency measurement[J]. Chinese Journal of Lasers, 45, 1104002(2018).

    [4] Li Y T, Zhang F M, Pan H et al. Simulation of vibration compensation in frequency-modulated continuous-wave laser ranging system[J]. Chinese Journal of Lasers, 46, 0104001(2019).

    [5] Shi C Z, Zhang F M, Pan H et al. Distance measurement technique of large bandwidth laser frequency modulated continuous wave under sinusoid frequency modulation[J]. Chinese Journal of Lasers, 45, 1201002(2018).

    [6] Zeng Z X, Shi S J. LFM pulse compression of a CO2 laser[J]. Chinese Journal of Lasers, 23, 981-985(1996).

    [7] Samarah A. A 320 MHz digital linear frequency modulated signal generator for radar applications using FPGA technology. [C]∥2014 International Conference on Computational Intelligence and Communication Networks, November 14-16, 2014, Bhopal, India. New York: IEEE, 966-972(2014).

    [8] Zhang P, Wang P, Cheng J L. Time-domain approach for LFM signal parameter estimation based on FPGA[J]. Electronics Letters, 54, 846-848(2018).

    [9] Ding M L, Liang X D, Tang L et al. Wideband LFM generator based on tracking PLL[J]. Journal of Microwaves, 34, 39-42(2018).

    [10] Wang C, Li M, Yao J P. Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system[J]. IEEE Photonics Technology Letters, 22, 1285-1287(2010).

    [11] Zhu Q C. Photonic generation of wideband chirped microwave signal and the performance analysis of pulse compression Xi'an:[D]. Xidian University, 45-48(2018).

    [12] Yao X S, Maleki L. Optoelectronic microwave oscillator[J]. Journal of the Optical Society of America B, 13, 1725-1735(1996).

    [13] Bao W Q, Yu J L, Wang W R. High-rate optical sampling based on optoelectronic oscillator[J]. Laser & Optoelectronics Progress, 55, 060701(2018).

    [14] Xu O, Fu X S. Temperature-insensitive method for interrogating fiber grating sensor using dual phase-shifted fiber grating and optoelectronic oscillator[J]. Laser & Optoelectronics Progress, 56, 150601(2019).

    [15] Li W Z, Kong F Q, Yao J P. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator[J]. Journal of Lightwave Technology, 31, 3780-3786(2013).

    [16] Li W Z, Yao J P. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop[J]. Journal of Lightwave Technology, 32, 3573-3579(2014).

    [17] Zhou P, Zhang F Z, Guo Q S et al. Linear frequency-modulated waveform generation based on a tunable optoelectronic oscillator. [C]∥2017 International Topical Meeting on Microwave Photonics (MWP), October 23-26, 2017, Beijing, China. New York: IEEE, 17415828(2017).

    [18] Zhou P, Zhang F Z, Gao B D et al. Optical pulse generation by an optoelectronic oscillator with optically injected semiconductor laser[J]. IEEE Photonics Technology Letters, 28, 1827-1830(2016).

    [19] Teng Y C, Zhang B F, Wu C X et al. Novel mini optoelectronic oscillator based on electrical gain ring resonator cavity[J]. Infrared and Laser Engineering, 45, 0520008(2016).

    [20] Teng Y C, Zhang B F, Wu C X et al. Precise tunable optoelectronic oscillator based on electrical gain ring resonator cavity[J]. Journal of Optoelectronics·Laser, 25, 2074-2078(2014).

    [21] Jiang Y, Yu J L, Hu L et al. Performance and applications of optoelectronic oscillator[J]. Laser & Optoelectronics Progress, 45, 39-45(2008).

    [22] Wang D S, Zhang B F, Lu L et al. A novel scheme of injection locked optoelectronic oscillator for high-frequency stability[J]. Journal of Optoelectronics·Laser, 24, 1456-1460(2013).

    [23] Paciorek L J. Injection locking of oscillators[J]. Proceedings of the IEEE, 53, 1723-1727(1965).

    [24] Adler R. A study of locking phenomena in oscillators[J]. Proceedings of the IEEE, 61, 1380-1385(1973).

    [25] Tang K, Yu J L, Wang J et al. Stable control of dual-cavity in regenerative mode-locking fiber laser[J]. Laser & Optoelectronics Progress, 55, 051402(2018).

    Li Liu, Jinlong Yu, Ju Wang, Chuang Ma, Tianyuan Xie, Yang Yu, Jie Fang, Haitao Peng. Linear Frequency-Modulated Signal Generation Based on Optoelectronic Oscillator Combined with Electrical Frequency-Selected Cavity[J]. Laser & Optoelectronics Progress, 2020, 57(3): 032301
    Download Citation