[1] Jia J X, Wang Y M, Chen J S et al. Status and application of advanced airborne hyperspectral imaging technology: a review[J]. Infrared Physics & Technology, 104, 103115(2020).
[2] Qi H X, Yao B, Wang J Y et al. The design of a wide-angle and wide spectral range pushbroom hyperspectral imager[J]. Proceedings of SPIE, 9263, 92630F(2014).
[3] Zhang D, Yuan L Y, Wang S W et al. Wide swath and high resolution airborne hyperspectral imaging system and flight validation[J]. Sensors, 19, 1667(2019).
[4] Hu F, Jin S Y. Study on the development of wide swath imaging technology about high-resolution optical remote sensing satellites[J]. Geomatics World, 24, 45-50(2017).
[5] Hu F. Research on inner FOV stitching theories and algorithms for sub-images of three non-collinear TDI CCD chips[D]. Wuhan: Wuhan University(2010).
[6] Zhang G, Liu B, Jiang W S. Inner FOV stitching algorithm of spaceborne optical sensor based on the virtual CCD line[J]. Journal of Image and Graphics, 17, 696-701(2012).
[7] Tang X M, Hu F, Wang M et al. Inner FoV stitching of spaceborne TDI CCD images based on sensor geometry and projection plane in object space[J]. Remote Sensing, 6, 6386-6406(2014).
[8] Pan J, Hu F, Wang M et al. Inner FOV stitching of ZY-102C HR camera based on virtual CCD line[J]. Geomatics and Information Science of Wuhan University, 40, 436-443(2015).
[9] Wang H, Mo F, Li Q J et al. Inner FOV stitching of spaceborne multispectral camera based on virtual CCD line under back projection in object-space[J]. Spacecraft Recovery & Remote Sensing, 40, 118-125(2019).
[10] Jiang Y H, Xu K, Zhao R S et al. Stitching images of dual-cameras onboard satellite[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 274-286(2017).
[11] Cheng Y F, Jin S Y, Wang M et al. An high accuracy image mosaicking approach of optical remote sensing satellite for multi-camera system[J]. Acta Optica Sinica, 37, 0828003(2017).
[12] Cheng Y F, Jin S Y, Wang M et al. Image mosaicking approach for a double-camera system in the GaoFen2 optical remote sensing satellite based on the big virtual camera[J]. Sensors, 17, 1441(2017).
[13] Wang M, Tian Y, Cheng Y F. Development of on-orbit geometric calibration for high resolution optical remote sensing satellite[J]. Geomatics and Information Science of Wuhan University, 42, 1580-1588(2017).
[14] Li K, Zhang Y S, Meng W C et al. Point-source-target-based method for space remote sensing geometric calibration and positioning accuracy improvement[J]. Acta Optica Sinica, 40, 1828003(2020).
[15] Yeh C K. Tsai V J D. Self-calibrated direct geo-referencing of airborne pushbroom hyperspectral images[C]∥2011 IEEE International Geoscience and Remote Sensing Symposium, July 24-29, 2011, Vancouver, BC, Canada., 2881-2883(2011).
[16] Wang M, Hu J, Zhou M, Remote Sensing, Spatial Information Sciences et al. XL-, 1/W1, 369-372(2013).
[17] Zhang A W, Hu S X, Meng X G et al. Toward high altitude airship ground-based boresight calibration of hyperspectral pushbroom imaging sensors[J]. Remote Sensing, 7, 17297-17311(2015).
[18] Habib A, Zhou T, Masjedi A et al. Boresight calibration of GNSS/INS-assisted push-broom hyperspectral scanners on UAV platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1734-1749(2018).
[19] Zhang L Y. Research and realization on registration technology of narrow overlapping imaging spectrometer data[D]. Jinan: Shandong University(2016).
[20] Liu J, Wang D H, transformation between HPR. 3. 1(5):, 5, 54-56(2006).
[21] Du X P, Guo H D, Fan X T et al. Vertical accuracy assessment of SRTM and ASTER GDEM over typical regions of China using ICESat/GLAS[J]. Earth Science, 38, 887-897(2013).
[22] Takaku J, Tadono T, Tsutsui K, Spatial Information Science et al. Prague. Czech Republic: ISPRS, 2016, III-, 4, 25-31(2016).