• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 5, 1730011 (2017)
Oxana V. Semyachkina-Glushkovskaya1, Arkady S. Abdurashitov1, Elena I. Saranceva1, Eketerina G. Borisova2, Alexander A. Shirokov3, and Nikita V. Navolokin4
Author Affiliations
  • 1Saratov State University 83 Astrakhanskaya Str. Saratov 410012, Russia
  • 2Institute of Electronics, Bulgarian Academy of Sciences, TsarigradskoChaussee 72, Sofia 1784, Bulgaria
  • 3Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13, Prospekt Entuziastov, Saratov 410049, Russia
  • 4Saratov State Medical University, Saratov 410010, Russia
  • show less
    DOI: 10.1142/s1793545817300117 Cite this Article
    Oxana V. Semyachkina-Glushkovskaya, Arkady S. Abdurashitov, Elena I. Saranceva, Eketerina G. Borisova, Alexander A. Shirokov, Nikita V. Navolokin. Blood-brain barrier and laser technology for drug brain delivery[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1730011 Copy Citation Text show less
    References

    [1] P. Ehrlich, Das Sauerstoffbedürfnis des Organismus, Eine Farbenanalytische Studie, Hirschwald, Berlin (1885).

    [2] E. E. Goldmann, Vitalfarbung am Zentral-nervensystem, Abh Preuss Akad Wissensch, Physkol Mathem Klasse, Vol. 1, pp. 1-60, Konigl. Akademie der Wissenschaften (1909).

    [3] E. E. Goldmann, “The process of digestion: Illustrated by the action ofstains on the living tissues,” The Lancet 185, 69-71 (1913).

    [4] N. R. Saunders, J.-J. Dreifuss, K. M. Dziegielewska, P. A. Johansson, M. D. Habgood, K. Mollgard, and H.-C. Bauer. “The rights and wrongs of blood-brain barrier permeability studies: A walk through 100 years of history,” Front Neurosci. 8, 404 (2014).

    [5] O. V. Semyachkina-Glushkovskaya, “Blood-brain barrier and cerebral blood flow: Age differences in hemorrhagic stroke,” J. Innov. Opt. Health Sci. 9, 1-10 (2015).

    [6] L. Stern, “Recherchessurle liquid céphalo-rachidien.1.Les rapportsentrele liquid céphalo-rachidienetlacirculationsanguine,” Arch. Int. Physiol. 17, 138-192 (1921).

    [7] L. Stern, “Recherches sur le liquid céphalo-rachidien. II. Les rapports entrele liquid céphalo-rachidien et les élémentsnerveux de l’axecérébro-spinal,” Arch. Int. Physiol. 17, 391-448 (1922).

    [8] L. Stern, “Recherches sur le liquid céphalo-rachidien. II. Rapports entrele liquid céphalo-rachidien et des espacesventriculaires et cellui des espaces sous-arachnodiens,” Arch. Int. Physiol. 20, 403-436 (1923).

    [9] L. Stern, “Les rapports entre l’augmentation de la perméabilité de labarrièrehémato-encéphalique et les alterations de son substratum morphologique,” C. R. Soc. Biol. 98, 1515-1517 (1928).

    [10] L. Stern, “Les échangesentrele liquid céphalorachidien et lesélémentsnerveuxcérébro-spinaux,” C. R. Soc. Biol. 98, 1518-1519 (1928).

    [11] W. A. Banks, “From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery,” Nat. Rev. Drug Discov. 5(4), 275-292 (2016).

    [12] N. J. Abbott, “Structure and function of the blood-brain barrier,” Neurobiol. Dis. 37, 13-25 (2010).

    [13] N. J. Abbott, Comparative physiology of the blood-brain barrier, Physiology and Pharmacology of the Blood-Brain Barrier, M. W. B. Bradbury Ed. Springer-Verlag, Heidelberg, pp. 371-396 (1992).

    [14] N. J. Abbott, “Astrocyte-endothelial interactions at the blood-brain barrier,” Nat. Rev. Neurosci. 7, 41-53 (2006).

    [15] P. Balabh, “The blood-brain barrier: an overview structure, regulation, and clinical implication,” Neurobiol. Dis. 16, 1-13 (2004).

    [16] H. Wolburg, “Tight junctions of the blood-brain barrier: development, composition and regulation,” Vascul. Pharmacol. 38, 323-337 (2002).

    [17] K. Matter, “Signalling to and from tight junctions,” Nat. Rev. Mol. Cell. Biol. 4, 225-236 (2003).

    [18] H. Wolburg, “Brain endothelial cells and the glio-vascular complex,” Cell Tissue Res. 335, 75-96 (2009).

    [19] B. T. Hawkins, “The blood-brain barrier/neurovascular unit in health and disease,” Pharmacol Rev. 57, 173-185 (2005).

    [20] M. Furuse, “Claudin-1 and -2: Novel integral membrane proteins localizing attight junctions with no sequence similarity to occludin,” J. Cell Biol. 141, 1539-1550 (1998).

    [21] K. Morita, “Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis,” J. Cell Biol. 145, 579-588 (1999).

    [22] L. L. Mitic, “Molecular physiology and pathophysiology of tight junctions. I. Tight junction structure and function: Lessons from mutant animals and proteins,” Am. J. Physiol. Gastrointest. Liver. Physiol. 297, G250-G254 (2000).

    [23] M. Furuse, Occludin: A novel integral membrane protein localizing at tightjunctions,” J. Cell Biol. 123, 1777-1788 (1993).

    [24] Y. Ando-Akatsuka, “Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, andrat-kangaroo homologues,” J. Cell Biol. 133, 43-47 (1996).

    [25] T. Hirase, “Occludin as a possible determinant of tight junction permeability in endothelial cells,” J. Cell.Sci. 110, 1603-1613 (1997).

    [26] M. C. Papadopoulos, “Occludin expression in microvessels of neoplastic and non-neoplastic human brain,” Neuropathol. Appl. Neurobiol. 27, 384-395 (2001).

    [27] M. Furuse, “Manner of interaction of heterogeneous claudin species within and between tight junction strands,” J. Cell Biol. 147, 891-903 (1999).

    [28] I. Martin-Padura, “Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration,” J. Cell Biol. 142, 117-127 (1998).

    [29] M. Aurrand-Lions, “Heterogeneity of endothelial junctions is reflected by differentialexpression and specific subcellular localization of the three JAM family members,” Blood 98, 3699-3707 (2001).

    [30] G. Bazzoni, “Homophilic interaction of junctional adhesion molecule,” J. Biol. Chem. 275, 30970-30976 (2000).

    [31] J. Haskins, “ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin,” J. Cell Biol. 141, 199-208 (1998).

    [32] R. Moretti, “Blood-brain barrier dysfunction in disorders of the developing brain,” Front. Neurosci. 9, 15-30 (2015).

    [33] C. J. Ek, “Barriers in the developing brain and neurotoxicology,” Neurotoxicology 33, 586-604 (2012).

    [34] N. J. Abbott, “Astrocyte-endothelial interactions and blood-brain barrier permeability,” J. Anat. 200, 629-638 (2002).

    [35] D. J. Begley, “Structural and functional aspects of the blood-brain barrier,” Progr. Drug Res. 61, 39-78 (2003).

    [36] M. Dean, “The human ATP-binding cassette (ABC)transporter superfamily,” Genome Res. 11, 1156-1166 (2001).

    [37] D. J. Begley, “ABC transporters and the blood-brain barrier,” Curr. Pharm. Des. 10, 1295-1312 (2004).

    [38] S. Dauchy, “ABC transporters, cytochromesP450 and their main transcription factors: Expression at the human blood-brain barrier,” J. Neurochem. 107, 1518-1528 (2008).

    [39] J. Kamiie, “Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria,” Pharm. Res. 25, 69-83 (2008).

    [40] C. C. Visser, “Characterization of the transferrin receptor on brain capillary endothelial cells,” Pharm Res. 21, 761-769 (2004).

    [41] B. V. Zlokovic, “Asaturable mechanism for transport of immunoglobulin G across the blood-brain barrier of the guinea pig,” Exp. Neurol. 107, 263-270 (1990).

    [42] W. A. Banks, “The source of cerebral insulin,” Eur. J. Pharmacol. 490, 5-12 (2004).

    [43] I. Glezer, “Neuroprotective role of the innate immune system by microglia,” Neuroscience 147, 867-883 (2007).

    [44] W. F. Hickey, “Leukocyte traffic in the central nervous system: The participants and their roles,” SeminImmunol. 11, 125-137 (1999).

    [45] E. G. Perdiguero, “The development and maintenance of resident macrophages,” Nat. Immunol. 17, 2-8 (2016).

    [46] A. Louveau, “Structural and functional features of central nervous system lymphatic vessels,” Nat. 523, 337-341 (2015).

    [47] H. Wolburg, “Diapedesis of mononuclearcells across cerebral venules during experimental autoimmune encephalomyelitisleaves the tight junctions intact,” Acta Neuropathol. 109, 181-190 (2005).

    [48] A. Mullard, “FDA drug approvals,” Nat. Rev. Drug Discov. 12, 87-90 (2013).

    [49] W. M. Pardridge, “Blood-brain barrier delivery,” Drug Discov. Today. 12, 54-61 (2007).

    [50] W. M. Pardridge, Brain Drug Targeting: The Future of Brain Drug Development, Vol. 111, (Cambridge University Press, UK, 2001).

    [51] A. K. Ghose, “A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases,” J. Comb. Chem. 1, 55-68 (1999).

    [52] C. M. de Lange, Drug Delivery to the Brain: Physiological Concepts, Methodologies and Approaches (Springer, New York, 2014).

    [53] S. Mitragotri, “Devies for overcoming biological barriers: The use of physical forces to disrupt the barriers,” Adv. Drug. Deliv. Rev. 65, 100-103 (2013).

    [54] P. K. Pandey, “Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking,” Tissue Barriers 4, e1129476 (2016).

    [55] V. Kiviniemi, “Real-time monitoring of human blood-brain barrier disruption,” PLoS ONE 12, e0174072 (2017).

    [56] S. Wu, “Intranasal delivery of neural stem cells: A CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis,” J. Clin. Cell. Immunol. 4, 42-48 (2013).

    [57] P. C. Chu, “Focused ultrasound-induced blood-brain barrier opening: Association with mechanical index and cavitation index analyzed by dynamic contrast-enhanced magnetic-resonance imaging,” Sci. Rep. 6, 33264 (2016).

    [58] M. C. Tetard, “Experimental use of photodynamic therapy in high grade gliomas: A review focused on 5-aminolevulinic acid,” Photodiagn. Photodyn. Ther. 11, 319-330 (2014).

    [59] S. A. Friesen, “5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review),” Int. J. Oncol. 21, 577-582 (2002).

    [60] M. J. Colditz, “Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies,” J. Clin. Neurosci. 19, 1471-1474 (2012).

    [61] T. Kuroiwa, “Photodynamic diagnosis and photodynamic therapy for the brain tumors,” Prog. Neuro-Oncol. 21, 14-21 (2014).

    [62] B. Chen, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16, 279-305 (2006).

    [63] B. Krammer, “Vascular effects of photodynamic therapy,” Anticancer Res. 21, 4271-4277 (2001).

    [64] T. S. Zavadskaya, “Photodynamic therapy in the treatment of glioma,” Exp. Oncol. 37, 234-241 (2015).

    [65] M. S. Mathews, “Cerebral edema following photodynamic therapy using endogenous and exogenous photosensitizers in normal brain,” Lasers Surg. Med. 43, 892-900 (2011).

    [66] S. S. Stylli, “Photodynamic therapy of cerebral glioma - A review Part I - A biological basis,” J. Clin. Neurosci. 13, 615-625 (2006).

    [67] H. Hirschberg, “Disruption of the blood-brain barrier following ALA-mediated photodynamic therapy,” Lasers Surg. Med. 40, 535-542 (2008).

    [68] S. J. Madsen, “Site-specific opening of the blood-brain barrier,” J. Biophoton. 3, 356-367 (2010).

    [69] S. J. Madsen, “Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption,” Lasers Surg. Med. 45, 524-532 (2013).

    [70] S. J. Madsen, “Nanoparticle-loaded macrophage-mediated photothermal therapy: Potential for glioma treatment,” Lasers Med. Sci. 4, 1357-1365 (2015).

    [71] E. Angell-Petersen, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104, 109-117 (2006).

    [72] V. H. Fingar, “Vascular effects of photodynamic therapy,” J. Clin. Laser Med. Surg. 14, 323-328 (1996).

    [73] L. A. Sporn, “Photofrin and light induces microtubule depolymerization in cultured human endothelial cells,” Cancer Res. 52, 3443-3448 (1992).

    [74] S. S. Hu, “Effects of photodynamic therapy on the ultrastructure of glioma cells,” Biomed. Environ. Sci. 20, 269-273 (2007).

    [75] F. Celine, “Innovations of photodynamic therapy for brain tumors: Potential of multifunctional nanoparticles,” J. Carcinog. Mutag. 8, (2012).

    [76] A. J. Trinidad, “Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: An in vitro study on squamous cell head and neck carcinoma,” Lasers Surg. Med. 4, 310-318 (2014).

    [77] A. Aspelund, “A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules,” J. Exp. Med. 212, 991-999 (2015).

    [78] J. J. Iliff, “A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta,” Sci. Transl. Med. 24, 147ra111 (2012).

    [79] N. A. Jessen, “The glymphatic system: A Beginner’s guide,” Neurochem. Res. 40, 2583-2599 (2016).

    [80] C. J. Lin, “Reactive macular edema and acute visual loss after photodynamic therapy on the same day of fluorescein angiography,” Oman. J. Ophthalmol. 4, 84-86 (2011).

    [81] M. Jarvi, “Insights into photodynamic therapy dosimetry: Simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurement,” Biophys. J. 102, 661-671 (2012).

    [82] S. A. De Visscher, “mTHPC mediated photodynamic therapy (PDT) of squamous cell carcinoma in the head and neck: A systematic review,” Oral. Oncol. 49, 192-210 (2013).

    [83] O. V. Semyachkina-Glushkovskaya, “Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology,” Prog. Quantum Electron. 7, 1-17 (2017).

    [84] O. Semyachkina-Glushkovskaya et al., “Photodynamic opening of blood-brain barrier,” Biomed. Opt. Express (2017) (accepted).

    [85] O. Semyachkina-Glushkovskaya et al., “Application of optical coherent tomography for in vivo monitoring of cerebral lymphatics during opening of blood-brain barrier,” J. Biomed. Opt. (2017) (accepted).

    Oxana V. Semyachkina-Glushkovskaya, Arkady S. Abdurashitov, Elena I. Saranceva, Eketerina G. Borisova, Alexander A. Shirokov, Nikita V. Navolokin. Blood-brain barrier and laser technology for drug brain delivery[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1730011
    Download Citation