• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 5, 1440001 (2014)
Nanguang Chen1、2, Shakil Rehman1、2, and Colin J. R. Sheppard3、*
Author Affiliations
  • 1Department of Biomedical Engineering National University of Singapore, Singapore 117576
  • 2Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
  • 3Department of Nanophysics, Istituto Italiano di Tecnologia via Morego 30, 16163 Genova, Italy
  • show less
    DOI: 10.1142/s179354581440001x Cite this Article
    Nanguang Chen, Shakil Rehman, Colin J. R. Sheppard. Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1440001 Copy Citation Text show less
    References

    [1] W.-F. Cheong, S. A. Prahl, A. J. Welch, "A review of the optical properties of biological tissue," IEEE J. Quantum Electron. 26, 2166–2185 (1990).

    [2] Y. Ueno, M. Shimizu, "An optical-fiber cable fault location method," IEEE J. Quantum Electron. 75, 77D–78D (1975).

    [3] M. K. Barnoski, S. M. Jensen, "Fibre waveguides: A novel technique for investigating attenuation characteristics," Appl. Opt. 15, 2112–2115 (1976).

    [4] F. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, A. Oseroff, "Femtosecond optical ranging in biological systems," Opt. Lett. 11, 150–152 (1986).

    [5] K. M. Yoo, R. R. Alfano, "Time-resolved coherent and incoherent components of forward light scattering in random media," Opt. Lett. 15, 320–322 (1990).

    [6] S. L. Jacques, "Time resolved propagation of ultrashort laser pulses within turbid tissue," Appl. Opt. 28, 2223–2229 (1989).

    [7] S. Anderson-Engels, R. Berg, O. Jarlmann, S. Svanberg, "Time- resolved transillumination for medical diagnostics," Opt. Lett. 15, 1179–1181 (1990).

    [8] D. G. Papaioannou, G. W. Hooft, J. J. M. Baselman, M. J. C. van Gemert, "Image quality in timeresolved transillumination of highly scattering medium," Appl. Opt. 34, 6144–6157 (1995).

    [9] R. I. MacDonald, "Frequency domain optical reflectometry," Appl. Opt. 20, 1840–1844 (1981).

    [10] W. Eickhoff, R. Ulrich, "Optical frequency-domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693–695 (1981).

    [11] M. Davidson, K. Kaufman, I. Mazor, F. Cohen, "An application of interference microscopy to integrated circuit inspection and metrology," Proc. SPIE, Vol. 775, pp. 233–247 (1987).

    [12] E. Beaurepaire, A.-C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, "Full-field optical coherence tomography," Opt. Lett. 23, 244–246 (1998).

    [13] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178–1181 (1991).

    [14] C. J. R. Sheppard, T. Wilson, "Effects of high angles of convergence on V ezT in the scanning acoustic microscope," App. Phys. Lett. 38, 858–859 (1981).

    [15] D. K. Hamilton, T. Wilson, C. J. R. Sheppard, "Experimental observations of the depth-discrimination properties of scanning microscopes," Opt. Lett. 6, 625–626 (1981).

    [16] I. J. Cox, "Scanning optical fluorescence microscopy," J. Microsc. 133, 149–154 (1984).

    [17] C. J. Cogswell, C. J. R. Sheppard, "Imaging using confocal brightfield techniques," Institute of Physics Conference Series 98, 633–638 (1990).

    [18] C. J. Cogswell, D. K. Hamilton, C. J. R. Sheppard, "Colour reflection microscopy using red, green and blue lasers," J. Microsc. 165, 103–117 (1992).

    [19] C. J. R. Sheppard, T. Wilson, "Depth of field in the scanning microscope," Opt. Lett. 3, 115–117 (1978).

    [20] J. M. Schmitt, A. Kniittel, M. Yadlowsky, "Confocal microscopy in turbid media," J. Opt. Soc. Am. A 11, 2226–2235 (1994).

    [21] M. Minsky, "Microscopy apparatus," US Patent 3,013,467 filed 7 November, 1957 (1961).

    [22] Z. Koana, J. Illumination Eng. Inst. 26, 371–385 (1942).

    [23] H. Naora, "Microspectrophotometry and cytochemical analysis of nucleic acids," Science 114, 279–280 (1951).

    [24] C. J. R. Sheppard, A. Choudhury, "Image formation in the scanning microscope," Opt. Acta 24, 1051–1073 (1977).

    [25] C. J. R. Sheppard, X. Mao, "Confocal microscopes with slit apertures," J. Mod. Opt. 35, 1169–1185 (1988).

    [26] R. Wolleschensky, B. Zimmermann, "High-speed confocal fluorescence imaging with a novel line scanning microscope," J. Biomed. Opt. 11, 064011 (2006).

    [27] H. Goldman, "Spaltlampenphotographie undphotometrie," Ophthalmologica 98, 257–270 (1940).

    [28] M. Petran, M. Hadravsky, D. Egger, R. Galambos, "Tandem scanning reflected light microscope," J. Opt. Soc. Am. 58, 661–664 (1968).

    [29] M. D. Egger, M. Petran, "New reflected-light microscope for viewing unstained brain and ganglion cells," Science 305–307 (1967).

    [30] C. J. R. Sheppard, T. Wilson, "The theory of the direct-view confocal microscope," J. Microsc. 124, 107–117 (1981).

    [31] C. J. R. Sheppard, T. Wilson, "Image formation in scanning microscopes with partially coherent source and detector," Opt. Acta 25, 315–325 (1978).

    [32] T. Wilson, A. R. Carlini, "Size of detector in confocal imaging systems," Opt. Lett. 12, 227–229 (1987).

    [33] M. Gu, C. J. R. Sheppard, "Three-dimensional imaging in confocal fluorescent microscopy with annular lenses," J. Mod. Opt. 38, 2247–2263 (1991).

    [34] M. Gu, C. J. R. Sheppard, "Confocal fluorescent microscopy with a finite-sized circular detector," J. Opt. Soc. Am. A 9, 151–153 (1992).

    [35] M. Gu, T. Tannous, C. J. R. Sheppard, "Effect of numerical aperture, pinhole size and annular pupil on confocal imaging through highly scattering media," Opt. Lett. 21, 312–314 (1996).

    [36] M. Kempe, A. Z. Genack, W. Rudolph, P. Dorn, "Ballistic and diffuse light detection in confocal and heterodyne imaging systems," J. Opt. Soc. Am. A 14, 216–223 (1997).

    [37] X. S. Gan, S. P. Schilders, M. Gu, "Image formation in turbid media under a microscope," J. Opt. Soc. Am. A 15, 2052–2058 (1998).

    [38] L. Giniunas, R. Juskaitis, S. V. Shatalin, "Scanning fiber-optic microscope," Electron. Letters 27, 724–726 (1991).

    [39] T. Dabbs, M. Glass, "Single-mode fibers used as confocal microscope pinholes," Appl. Opt. 31, 705– 706 (1992).

    [40] P. M. Delaney, M. H. Harris, R. G. King, "Fibreoptic laser scanning confocal microscopy suitable for fluorescence imaging," Appl. Opt. 33, 573–577 (1994).

    [41] M. Gu, C. J. R. Sheppard, "Signal level of the fibre optical confocal scanning microscope," J. Mod. Opt. 38, 1621–1630 (1991).

    [42] M. Gu, C. J. R. Sheppard, "Axial resolution in the fibre-optical confocal scanning microscope using annular lenses," Opt. Commun. 88, 27–32 (1992).

    [43] W. Lukosz, M. Marchand, "Optischen Abbildung unter überschreitung der Beugungsbedingten Aufl€osungsgrenze," Opt. Acta 10, 241–255 (1963).

    [44] M. M. A. Neil, R. Juskaitis, T. Wilson, "Method for obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905–1907 (1997).

    [45] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, "I5M: 3D widefield light microscopy with better than 100nm axial resolution," J. Microsc. 195, 10–16 (1999).

    [46] M. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82–87 (2000).

    [47] V. J. Corcoran, "Directional characteristics in optical heterodyne detection processes," J. Appl. Phys. 36, 1819–1825 (1965).

    [48] Y. Fujii, H. Takimoto, "Imaging properties due to the optical heterodyne and its application to laser microscopy," Opt. Comm. 18, 45–47 (1976).

    [49] T. Sawatari, "Optical heterodyne scanning microscope," Appl. Opt. 12, 2768–2772 (1973).

    [50] M. Kempe, W. Rudolph, "Scanning microscopy through thick layers based on linear correlation," Opt. Lett. 19, 1919–1921 (1994).

    [51] M. Kempe, W. Rudolf, "Comparative study of confocal and heterodyne microscopy for imaging through scattering media," J. Opt. Soc. Am. A 13, 46–52 (1996).

    [52] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590–592 (1994).

    [53] H. Siedentopf, R. Zsigmondy, "Uber Sichtbarmachung und Gr€ossenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingl ser," Ann. der Phys. 10, 1–39 (1903).

    [54] D. M. Maurice, "Cellular membrane activity in the corneal endothelium of the intact eye," Experientia 15, 1094–1095 (1968).

    [55] D. M. Maurice, "A scanning slit optical microscope," Invest. Ophthalmol. 13, 1033–1037 (1974).

    [56] C. J. Koester, "A scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology," Appl. Opt. 19, 1749–1757 (1980).

    [57] C. J. Koester, "Comparison of optical sectioning methods: The scanning slit confocal microscope," in Handbook of Confocal Microscopy, J. Pawley, Ed., Plenum Press, New York, 525–533 (1990).

    [58] P. J. Dwyer, C. A. DiMarzio, "Confocal reflectance theta line scanning microscope for imaging human skin in vivo," Opt. Lett. 31, 942–944 (2006).

    [59] P. J. Dwyer, C. A. DiMarzio, M. Rajadhyaksha, "Confocal theta line-scanning microscope for imaging human tissues," Appl. Opt. 46, 1843–1851 (2007).

    [60] C. J. R. Sheppard, M. D. Sharma, "Integrated intensity, and imaging through scattering media," J. Mod. Opt. 48, 1517–1525 (2001).

    [61] C. J. R. Sheppard, W. Gong, K. Si, "The divided aperture technique for microscopy through scattering media," Opt. Exp. 33, 1599–1602 (2008).

    [62] W. Gong, K. Si, C. J. R. Sheppard, "Optimization of axial resolution in confocal microscope with D-shaped apertures," Appl. Opt. 48, 3998–4002 (2009).

    [63] W. Gong, K. Si, C. J. R. Sheppard, "Divided-aperture technique for fluorescence confocal microscopy through scattering media," Appl. Opt. 49, 752–757 (2010).

    [64] E. H. K. Stelzer, S. Lindek, S. Albrecht, R. Pick, G. Ritter, N. J. Salmon, R. Stricker, "A new tool for the observation of embryos and other large specimens - confocal theta-fluorescence microscopy," J. Microsc. 179, 1–10 (1995).

    [65] R. H. Webb, F. Rogomentich, "Confocal microscope with large field and working distance," Appl. Opt. 38, 4870–4875 (1999).

    [66] T. D. Wang, M. J. Mandella, C. H. Contag, G. S. Kino, "Dual-axis confocal microscope for highresolution in vivo imaging," Opt. Lett. 28, 414–416 (2003).

    [67] T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, G. S. Kino, "Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection," Opt. Lett. 28, 1915–1917 (2003).

    [68] J. T. C. Liu, M. J. Mandella, S. Friedland, R. Soetikno, J. H. Crawford, C. H. Contag, G. S. Kino, T. D. Wang, "Dual-axes confocal reflectance microscope for distinguishing colonic neoplasia," J. Biomed. Opt. 11, 054019 (2006).

    [69] L. K. Wong, M. J. Mandella, G. S. Kino, T. D. Wang, "Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture," Opt. Lett. 32, 1674–1676 (2007).

    [70] C. J. R. Sheppard, M. Gu, "Optical sectioning in confocal microscopes with annular pupil," Optik 86, 169–172 (1991).

    [71] C. J. R. Sheppard, M. Gu, "Improvement of axial resolution in confocal microscopy using an annular pupil," Opt. Commun. 84, 7–13 (1991).

    [72] M. Gu, C. J. R. Sheppard, H. Zhou, "Optimization of axial resolution in confocal imaging using annular pupils," Optik 93, 87–90 (1993).

    [73] X. S. Gan, S. P. Schilders, M. Gu, "Combination of annular aperture and polarization gating methods for efficient microscopic imaging through turbid medium: Theoretical analysis," Microsc. Anal. 3, 495–503 (1997).

    [74] M. Gu, C. J. R. Sheppard, "Effects of annular pupils on confocal fluorescent imaging," J. Mod. Opt. 39, 1883–1896 (1992).

    [75] M. Gu, T. Tannous, C. J. R. Sheppard, "Improved axial resolution in confocal fluorescence microscopy using annular pupils," Opt. Commun. 110, 533– 539 (1994).

    [76] A. H. Voie, "Three-dimensional reconstruction of the cochlear from two-dimensional images of optical sections," Comput. Med. Imag. Graph. 19, 377–384 (1995).

    [77] J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007–1009 (2004).

    [78] C. J. Engelbrecht, E. H. K. Stelzer, "Resolution enhancement in a light-sheet-based microscope (SPIM)," Opt. Lett. 31, 1477–1479 (2006).

    [79] J. Huisken, D. Y. R. Stainier, "Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)," Opt. Lett. 32, 2608–2610 (2007).

    [80] H.-U. Dodt, U. Leischner, A. Schierloh, N. J hling, C. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglg nsberger, K. Becker, "Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain," Nat. Meth. 4, 331–336 (2007).

    [81] T. Breuninger, K. Greger, E. H. K. Stelzer, "Lateral modulation boosts image quality in single plane illumination fluorescence microscopy," Opt. Lett. 32, 1938–1940 (2007).

    [82] F. O. Fahrbach, P. Simon, A. Rohrbach, "Microscopy with self-reconstructing beams," Nat. Photon. 4, 780–785 (2010).

    [83] F. O. Fahrbach, A. Rohrbach, "A line scanned light-sheet microscope with phase shaped selfreconstructing beams," Opt. Exp. 18, 24229–24244 (2010).

    [84] T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, "Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination," Nat. Meth. 8, 417–423 (2011).

    [85] S. Kalchmair, N. Jaerling, K. Becker, H.-U. Dodt, "Image contrast enhancement in confocal ultramicroscopy," Opt. Lett. 35, 79–81 (2010).

    [86] C. Tjokro, C. J. R. Sheppard, "Photon scattering phase space analysis in multiplanes within a microscope system," Proc. SPIE, Vol. 6163, U1630 (2006).

    [87] C. Tjokro, C. J. R. Sheppard, "Effects of apertures on scattered light: A Monte Carlo study of confocal imaging," Proc. SPIE, Vol. 6536, G5350 (2007).

    [88] H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, M. Osawa, "Extraction of quasi-straightforwardpropagating photons from diffused light transmitting through a scattering medium by polarization modulation," Opt. Lett. 20, 1501–1503 (1995).

    [89] K. M. Yoo, R. R. Alfano, "Time resolved depolarization of multiple backscattering light from random media," Phys. Lett. A 142, 531–536 (1989).

    [90] X. S. Gan, S. P. Schilders, M. Gu, "Image enhancement through turbid media under a microscope by use of polarization gating methods," J. Opt. Soc. Am. A 16, 2177–2184 (1999).

    [91] C. J. R. Sheppard, R. Kompfner, "Resonant scanning optical microscope," Appl. Opt. 17, 2879– 2882 (1978).

    [92] R. Hellwarth, P. Christiansen, "Nonlinear optical microscopic examination of structure in polycrystalline ZnSe," Opt. Commun. 12, 312–322 (1974).

    [93] R. Hellwarth, P. Christiansen, "Nonlinear optical microscope using second harmonic generation," Appl. Opt. 14, 247–248 (1975).

    [94] C. J. R. Sheppard, R. Kompfner, J. Gannaway, D. Walsh, "The scanning harmonic optical microscope," IEEE J. Quantum Electron. 13, 100D (1977).

    [95] J. Gannaway, C. J. R. Sheppard, "Second harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435–439 (1978).

    [96] I. Freund, M. Deutsch, "Second-harmonic microscopy of biological tissue," Opt. Lett. 11, 94–96 (1986).

    [97] I. Freund, M. Deutsch, A. Sprecher, "Connective tissue polarity, optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693–712 (1986).

    [98] M. D. Duncan, J. Reintjes, T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7 (1982).

    [99] W. Denk, J. H. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscopy," Science 248, 73–76 (1990).

    [100] W. Denk, J. P. Strickler, W. W. Webb, "Twophoton laser microscopy," US Patent 5034613 (1991).

    [101] M. Muller, J. Squier, K. R. Wilson, G. J. Brakenho ff, "3D microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266– 274 (1998).

    [102] S. W. Hell, K. Bahlmann, M. Schrader, M. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, "Threephoton excitation in fluorescence microscopy," J. Biomed. Opt. 1, 71–74 (1996).

    [103] C. J. R. Sheppard, "Image formation in threephoton fluorescence microscopy," Bioimaging 4, 124–128 (1996).

    [104] M. Gu, "Resolution in three-photon fluorescence scanning microscopy," Opt. Lett. 21, 988–990 (1996).

    [105] R. Gauderon, P. B. Lukins, C. J. R. Sheppard, "Simultaneous multi-channel two-photon microscopy," Micron 32, 685–689 (2001).

    [106] M. Gu, C. J. R. Sheppard, "Comparison of threedimensional imaging properties between twophoton and single-photon fluorescence microscopy," J. Microsc. 177(2), 128–137 (1995).

    [107] X. S. Gan, M. Gu, "Confocal fluorescence can rely on chemically or biologically specific fluorescent labels, or intrinsic autofluorescence," J. Appl. Phys. 87, 3214–3221 (2000).

    [108] M. Gu, C. J. R. Sheppard, "Effects of a finite-sized pinhole on 3-D image formation in confocal twophoton fluorescence microscopy," J. Mod. Opt. 40, 2009–2024 (1993).

    [109] R. Gauderon, C. J. R. Sheppard, "Improvement in imaging in confocal fluorescent microscopes using detector arrays," Bioimaging 6, 126–129 (1998).

    [110] R. Gauderon, P. B. Lukins, C. J. R. Sheppard, "Effect of a confocal pinhole in two-photon microscopy," Microsc. Res. Tech. 47, 210–214 (1999).

    [111] R. Gauderon, C. J. R. Sheppard, "Effect of a finitesize pinhole on the noise performance in single-, two- and three-photon fluorescence microscopy," Appl. Opt. 38, 3562–3565 (1999).

    [112] P. T€or€ok, C. J. R. Sheppard, "The role of pinhole size in high-aperture two- and three-photon microscopy," in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances, A. Diaspro, Ed., pp. 127–152, Wiley- Liss, New York (2002).

    [113] S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, "Measuring serotonin distribution in live cells with three-photon excitation," Science 275, 530–532 (1997).

    [114] M. Schrader, K. Bahlmann, S. W. Hell, "Threephoton- excitation microscopy: Theory, experiment and applications," Optik 104, 116–124 (1997).

    [115] P. J. Campagnola, M.-d. Wei, A. Lewis, L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341–3349 (1999).

    [116] R. Gauderon, P. B. Lukins, C. J. R. Sheppard, "Three-dimensional second-harmonic generation imaging with femtosecond laser pulses," Opt. Lett. 23, 1209–1211 (1998).

    [117] J. N. Gannaway, C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435–439 (1978).

    [118] C. J. R. Sheppard, R. Kompfner, "Resonant scanning optical microscope," Appl. Opt. 17, 2879– 2882 (1978).

    [119] M. D. Duncan, J. Reintjes, T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350 (1982).

    [120] Y. Barad, H. Eisenberg, M. Horowitz, Y. Silberberg, "Nonlinear scanning laser microscopy by third-harmonic generation," App. Phys. Lett. 70, 922–924 (1997).

    [121] M. Müller, J. Squier, K. R. Wilson, G. J. Brakenho ff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266– 274 (1998).

    [122] J. A. Squier, M. Muller, G. J. Brakenhoff, "Third harmonic generation microscopy," Opt. Exp. 3, 315–324 (1998).

    [123] D. Yelin, Y. Silberberg, "Laser scanning thirdharmonic- generation microscopy in biology," Opt. Exp. 5, 169–175 (1999).

    [124] P. Theer, M. T. Hasan, W. Denk, "Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022–1024 (2003).

    [125] M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numericalaperture objectives," J. Microsc. 191, 141–150 (1998).

    [126] S. Sakadzic, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, J. G. Fujimoto, "Multi-photon microscopy with a low-cost and highly efficient Cr: licaf laser," Opt. Exp. 16, 20848–20863 (2008).

    [127] S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, B.-L. Lin, "Multimodal nonlinear spectral microscopy based on a femtosecond Cr: forsterite laser," Opt. Lett. 26, 1909–1911 (2001).

    [128] S.-W. Chu, S. Chen, T. Tsai, T.-M. Liu, C. P. Lin, H. Tsai, C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Exp. 11, 3093–3099 (2003).

    [129] M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, B. J. Tromberg, "Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media," J. Biomed. Opt. 14, 010508 (2009).

    [130] T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, T. Araki, "Ex vivo and in vivo second-harmonic generation imaging of dermal collagen fiber in skin: Comparison of imaging characteristics between modelocked Cr:forsterite and Ti:sapphire lasers," Appl. Opt. 48, D88–D95 (2009).

    [131] D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, C. Xu, "Deep tissue multiphoton microscopy using longer wavelength excitation," Opt. Exp. 17, 13354–13364 (2009).

    [132] D. Kobat, N. G. Horton, C. Xu, "In vivo twophoton microscopy to 1.6-mm depth in mouse cortex," J. Biomed. Opt. 16, 106014 (2011).

    [133] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, "In vivo threephoton microscopy of subcortical structures within an intact mouse brain," Nat. Photon. 7, 205–209 (2013).

    [134] J. Bewersdorf, R. Pick, S. W. Hell, "Multifocal multi-photon microscopy," Opt. Lett. 23, 655–657 (1998).

    [135] A. H. Buist, M. Müller, J. Squier, G. J. Brakenhoff, "Real time two photon absorption microscopy using multipoint excitation," J. Microsc. 192, 217–226 (1998).

    [136] J. Qu, L. Liu, Y. Shao, H. Niu, B. Z. Gao, "Recent progress in multifocal multiphoton microscopy," J. Innovative Opt. Health Sci. 5, 1250018 (2012).

    [137] H. Kim, C. Buehler, P. T. C. So, "High-speed twophoton scanning microscope," Appl. Opt. 38, 6004–6009 (1999).

    [138] G. Y. Fan, H. Fujisaki, A. Miyawaki, R.-K. Tsay, R. Y. Tsien, M. H. Ellisman, "Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with Cameleons," Biophys. J. 78, 2412–2420 (1999).

    [139] V. Iyer, B. E. Losavio, P. Saggau, "Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy," J. Biomed. Opt. 8, 460–471 (2003).

    [140] R. Kurtz, M. Fricke, J. Kalb, P. Tinnefeld, M. Sauer, "Application of multiline two-photon microscopy to functional in vivo imaging," J. Neurosci. Methods 151, 276–286 (2006).

    [141] K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, K. Bellve, "Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz," Opt. Exp. 15, 10991–10998 (2007).

    [142] K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, P. T. C. So, "Multifocal multiphoton microscopy based on multianode photomultiplier tubes," Opt. Exp. 15, 11658–11678 (2007).

    [143] M. Kempe, W. Rudolph, "Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses," Opt. Lett. 18, 137–139 (1993).

    [144] E. Papagiakoumou, V. de Sars, V. Emiliani, D. Oron, "Temporal focusing with spatially modulated excitation," Opt. Exp. 17, 5391–5401 (2009).

    [145] H. Dana, S. Shoham, "Numerical evaluation of temporal focusing characteristics in transparent and scattering media," Opt. Exp. 14, 4937–4948 (2011).

    [146] D. Oron, Y. Silberberg, "Spatiotemporal coherent control using shaped, temporally focused pulses," Opt. Exp. 13, 9903–9908 (2005).

    [147] G. Zhu, J. van Howe, M. Durst, W. Zipfel, C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Opt. Exp. 13, 2153–2159 (2005).

    [148] D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondare ff, I. A. Walmsley, S. Gigan, B. Chatel, "Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium," Nat. Commun. 2, 447 (2011).

    [149] R. Hellwarth, P. Christensen, "Nonlinear optical microscopic examination of structure in polycrystalline ZnSe," Opt. Commun. 12, 318–322 (1974).

    [150] S.-W. Chu, S.-P. Tai, M.-C. Chan, C.-K. Sun, I. C. Hsiao, C.-H. Lin, Y.-C. Chen, B.-L. Lin, "Thickness dependence of optical second harmonic generation in collagen fibrils," Opt. Exp. 15, 12005–12010 (2007).

    [151] I. Freund, M. Deutsch, A. Sprecher, "Connective tissue polarity: Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693–712 (1986).

    [152] P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, W. A. Mohler, "Threedimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 82, 493–508 (2002).

    [153] S. J. Lin, C. Y. Hsiao, Y. Sun, W. Lo, W. C. Lin, G. J. Jan, S. H. Jee, C. Y. Dong, "Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy," Opt. Lett. 30, 622–624 (2005).

    [154] V. Barzda, C. Greenhalgh, J. Aus der Au, Elmore S, J. van Beek, J. Squier, "Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy," Opt. Exp. 13, 8263–8276 (2005).

    [155] G. Mizutani, Y. Sonoda, H. Sano, M. Sakamoto, T. Takahashi, S. Ushioda, "Detection of starch granules in a living plant by optical second harmonic microscopy," J. Luminescence 87–89, 824– 826 (2000).

    [156] G. Cox, N. Moreno, J. Feijó, "Second-harmonic imaging of plant polysaccharides," J. Biomed. Opt. 10, 0240131–0240136 (2005).

    [157] N. Prent, R. Cisek, C. Greenhalgh, R. Sparrow, N. Rohitlall, M. S. Milkereit, C. Green, V. Barzda, "Application of nonlinear icroscopy for studying the structure and dynamics in biological systems," Proc. SPIE Vol. 5971, 597106 (2005).

    [158] L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320–322 (2000).

    [159] S.-W. Chu, I.-H. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, H.-L. Liu, "Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy," J. Microsc. 208, 190–200 (2002).

    [160] T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116–4125 (1995).

    [161] J. A. Squier, M. Muller, G. J. Brakenhoff, K. R. Wilson, "Third harmonic generation microscopy," Opt. Exp. 3, 315–324 (1998).

    [162] D. Oron, E. Tal, Y. Silberberg, "Depth-resolved multiphoton polarization microscopy by third-harmonic generation," Opt. Lett. 28, 2315–2317 (2003).

    [163] D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, Y. Silberberg, "Depth-resolved structural imaging by third-harmonic generation microscopy," J. Struct. Biol. 147, 3–11 (2004).

    [164] V. Shcheslavskiy, G. I. Petrov, S. Saltiel, V. V. Yakovlev, "Quantitative characterization of aqueous solutions probed by the third-harmonic generation microscopy," J. Struct. Biol. 147, 42–49 (2004).

    [165] D. Debarre, N. Olivier, E. Beaurepaire, "Signal epidetection in third-harmonic generation microscopy of turbid media," Opt. Exp. 15, 8913–8924 (2007).

    [166] E. J. Gualda, G. Filippidis, G. Voglis, M. Mari, C. Fotakis, N. Tavernarakis, "In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy," J. Microsc. 229, 141–150 (2008).

    [167] A. Zumbusch, G. R. Holtom, X. S. Xie, "Three dimensional vibrational imaging by coherent anti- Stokes Raman scattering," Phys. Rev. Lett. 82, 4142–4145 (1999).

    [168] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York 1984).

    [169] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590–592 (1994).

    [170] J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, M. V. Sivak, "Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues," IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).

    [171] T. Li, A. Wang, K. Murphy, R. Claus, "Whitelight scanning for michelson interferometer for absolute position-distance measurement," Opt. Lett. 20, 785–787 (1995).

    [172] H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, M. Haruna, "Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness," Appl. Opt. 41, 1315–1322 (2002).

    [173] E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151–153 (1992).

    [174] A. G. Podoleanu, G. M. Dobre, D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23, 147–149 (1998).

    [175] G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, J. G. Fujimoto, "Rapid acquisition of in vivo biological images by use of optical coherence tomography," Opt. Lett. 21, 1408–1410 (1996).

    [176] A. M. Weiner, J. P. Heritage, E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563–1572 (1988).

    [177] A. M. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung- Arunyawee, J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Exp. 3, 219–229 (1998).

    [178] G. J. Tearney, B. E. Bouma, J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811–1813 (1997).

    [179] C. J. R. Sheppard, S. S. Kou, C. Depeursinge, "Reconstruction in interferometric synthetic aperture microscopy:Comparison with optical coherence tomography and digital holographic microscopy," J. Opt. Soc. Am. A 29, 244–250 (2012).

    [180] M. Gu, X. Gan, C. J. R. Sheppard, "Threedimensional coherent transfer functions in fibre optical confocal scanning microscopes," J. Opt. Soc. Am. A 8, 1019–1025 (1991).

    [181] M. Villiger, T. Lasser, "Image formation and tomogram reconstruction in optical coherence microscopy," J. Opt. Soc. Am. A 27, 2216–2228 (2010).

    [182] C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, "Three-dimensional transfer functions for highaperture systems," J. Opt. Soc. Am. A 11, 593–598 (1994).

    [183] E. Auksorius, Y. Bromberg, R. Motiejūnait , A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, G. J. Tearney, "Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications," Biomed. Opt. Exp. 3, 661–666 (2012).

    [184] J. M. Schmitt, S. L. Lee, K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203–207 (1997).

    [185] F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A. F. Fercher, "Dynamic coherent focus OCT with depth-independent transversal resolution," J. Mod. Opt. 46, 541–553 (1999).

    [186] B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, I. A. Vitkin, "Dynamic focus control in highspeed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123–128 (2004).

    [187] A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, G.-P. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, 103902 (2005).

    [188] S. Murali, J. Rolland, "Dynamic-focusing microscope objective for optical coherence tomography," International Optical Design Co

    Nanguang Chen, Shakil Rehman, Colin J. R. Sheppard. Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1440001
    Download Citation