• Chinese Journal of Lasers
  • Vol. 48, Issue 14, 1402019 (2021)
Qing Lin1、2、*, Naifei Ren2, Anran Song1, and Guangzhi Xia1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Suqian College, Suqian, Jiangsu 223800, China
  • 2School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • show less
    DOI: 10.3788/CJL202148.1402019 Cite this Article Set citation alerts
    Qing Lin, Naifei Ren, Anran Song, Guangzhi Xia. Mechanism of Femtosecond Laser-Induced Breakdown Mediated by Al/SiO2 Core/Shell Nanostructures[J]. Chinese Journal of Lasers, 2021, 48(14): 1402019 Copy Citation Text show less
    References

    [1] Ren Y T, Qi H, Chen Q et al. Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy[J]. International Journal of Heat and Mass Transfer, 106, 212-221(2017).

    [2] Liu P C, Chang M Y, Bai Z C et al. Enhanced fluorescence of CdSe/Al2O3 heterojunctions enabled by TiN nanoparticles[J]. Chinese Journal of Lasers, 47, 0913001(2020).

    [3] Xin K, Shi X F, Zhang X et al. Aggregation of gold nanoparticles based on photothermal effect and its application in surface-enhanced Raman scattering[J]. Acta Optica Sinica, 40, 0193001(2020).

    [4] Zhang X L, Zhang J, Zhu Y. Microfluidic surface-enhanced Raman scattering experiment using CNTs/AgNPs composite structure[J]. Chinese Journal of Lasers, 46, 1011001(2019).

    [5] Lukianova-Hleb E Y, Belyanin A, Kashinath S et al. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells[J]. Biomaterials, 33, 1821-1826(2012).

    [6] Terakawa M, Mitsuhashi T, Shinohara T et al. Near-infrared femtosecond laser-triggered nanoperforation of hollow microcapsules[J]. Optics Express, 21, 12604-12610(2013).

    [7] Bityurin N M, Afanasiev A V, Bredikhin V I et al. Surface nanostructuring by bichromatic femtosecond laser pulses through a colloidal particle array[J]. Quantum Electronics, 44, 556-562(2014).

    [8] Tanaka Y, Obara G, Zenidaka A et al. Femtosecond laser near-field nanoablation patterning using Mie resonance high dielectric constant particle with small size parameter[J]. Applied Physics Letters, 96, 261103(2010).

    [9] Wang S, Zhang H, Li W et al. Construction and experimental study of a multi-channel localized surface plasmon resonance analysis device[J]. Acta Optica Sinica, 39, 0228002(2019).

    [10] Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 10, 375-386(1974).

    [11] Vogel A, Noack J, Hüttman G et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Applied Physics B, 81, 1015-1047(2005).

    [12] Kennedy P K, Boppart S A, Hammer D X et al. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. comparison to experiment[J]. IEEE Journal of Quantum Electronics, 31, 2250-2257(1995).

    [13] Feng Q, Moloney J V, Newell A C et al. Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses[J]. IEEE Journal of Quantum Electronics, 33, 127-137(1997).

    [14] Noack J, Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density[J]. IEEE Journal of Quantum Electronics, 35, 1156-1167(1999).

    [15] Boulais É, Lachaine R, Meunier M. Plasma-mediated nanocavitation and photothermal effects in ultrafast laser irradiation of gold nanorods in water[J]. The Journal of Physical Chemistry C, 117, 9386-9396(2013).

    [16] Davletshin Y R, Lombardi A, Cardinal M F et al. A quantitative study of the environmental effects on the optical response of gold nanorods[J]. ACS Nano, 6, 8183-8193(2012).

    [17] Kreibig U, Vollmer M. Experimental methods[M]. //Kreibig U, Vollmer M. Optical properties of metal clusters, 25, 203-274(1995).

    [18] Bisker G, Yelin D. Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis[J]. Journal of the Optical Society of America B, 29, 1383(2012).

    [19] Hatef A, Meunier M. Plasma-mediated photothermal effects in ultrafast laser irradiation of gold nanoparticle dimers in water[J]. Optics Express, 23, 1967-1980(2015).

    [20] Liu X J, Lin Q Y, Tian Y H et al. Metal-chelate induced nanoparticle aggregation enhanced laser-induced breakdown spectroscopy for ultra-sensitive detection of trace metal ions in liquid samples[J]. Journal of Analytical Atomic Spectrometry, 35, 188-197(2020).

    [21] Simakin A, Astashev M E, Baimler I V et al. The effect of gold nanoparticle concentration and laser fluence on the laser-induced water decomposition[J]. The Journal of Physical Chemistry B, 123, 1869-1880(2019).

    [22] Koral C, Dell’Aglio M, Gaudiuso R et al. Nanoparticle-enhanced laser induced breakdown spectroscopy for the noninvasive analysis of transparent samples and gemstones[J]. Talanta, 182, 253-258(2018).

    [24] Zafar S, Conrad K A, Liu Q et al. Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations[J]. Applied Physics Letters, 67, 1031-1033(1995).

    [25] Vogel A, Rockwell B A. Roles of tunneling, multiphoton ionization, and cascade ionization for femtosecond optical breakdown in aqueous media[R](2009).

    [26] Sacchi C A. Laser-induced electric breakdown in water[J]. Journal of the Optical Society of America B, 8, 337-345(1991).

    [27] Wu A Q, Chowdhury I H, Xu X F. Femtosecond laser absorption in fused silica: numerical and experimental investigation[J]. Physical Review B, 72, 085128(2005).

    [28] Docchio F. Lifetimes of plasmas induced in liquids and ocular media by single Nd∶YAG laser pulses of different duration[J]. Europhysics Letters (EPL), 6, 407-412(1988).

    [29] Hopkins P E, Phinney L M, Serrano J R et al. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces[C]. //Proceedings of 2010 14th International Heat Transfer Conference, August 8-13, 2010, Washington, DC, USA, 313-319(2011).

    [30] Hu M, Goicochea J V, Michel B et al. Thermal rectification at water/functionalized silica interfaces[J]. Applied Physics Letters, 95, 151903(2009).

    [31] Vial A, Laroche T. Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method[J]. Journal of Physics D: Applied Physics, 40, 7152-7158(2007).

    [32] Vial A, Laroche T. Comparison of gold and silver dispersion laws suitable for FDTD simulations[J]. Applied Physics B, 93, 139-143(2008).

    [33] Novo C, Gomez D, Perez-Juste J et al. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study[J]. Physical Chemistry Chemical Physics, 8, 3540-3546(2006).

    [34] Sönnichsen C, Franzl T, Wilk T et al. Drastic reduction of plasmon damping in gold nanorods[J]. Physical Review Letters, 88, 077402(2002).

    [35] Scharte M, Porath R, Ohms T et al. Do Mie plasmons have a longer lifetime on resonance than off resonance?[J]. Applied Physics B, 73, 305-310(2001).

    [36] Boulais É, Lachaine R, Meunier M. Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation[J]. Nano Letters, 12, 4763-4769(2012).

    [37] Davletshin Y R, Kumaradas J C. The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures[J]. Beilstein Journal of Nanotechnology, 7, 869-880(2016).

    [38] Lin Z, Zhigilei L V, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium[J]. Physical Review B, 77, 075133(2008).

    [39] Valette S, le Harzic R, Huot N et al. 2D calculations of the thermal effects due to femtosecond laser-metal interaction[J]. Applied Surface Science, 247, 238-242(2005).

    [40] Keldysh L V. Ionization in the field of a strong electromagnetic wave[J]. Journal of Experimental and Theoretical Physics, 47, 1307-1314(1965).

    [41] DeMichelis C. Laser induced gas breakdown: a bibliographical review[J]. IEEE Journal of Quantum Electronics, 5, 188-202(1969).

    [42] Linz N, Freidank S, Liang X X et al. Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state[J]. Physical Review B, 91, 134114(2015).

    [43] Linz N, Freidank S, Liang X X et al. Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery[J]. Physical Review B, 94, 024113(2016).

    [44] Sudrie L, Couairon A, Franco M et al. Femtosecond laser-induced damage and filamentary propagation in fused silica[J]. Physical Review Letters, 89, 186601(2002).

    [45] Vogel A, Noack J, Nahen K et al. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales[J]. Applied Physics B, 68, 271-280(1999).

    Qing Lin, Naifei Ren, Anran Song, Guangzhi Xia. Mechanism of Femtosecond Laser-Induced Breakdown Mediated by Al/SiO2 Core/Shell Nanostructures[J]. Chinese Journal of Lasers, 2021, 48(14): 1402019
    Download Citation