• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 4, 402 (2018)
Lei CAO1、2、3、*, Sibing LU1、2、3, Kai WANG1、2、3, Zhanwei YAO1、2, Runbing LI1、2, Jin WANG1、2, and Mingsheng ZHAN1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2018.04.003 Cite this Article
    CAO Lei, LU Sibing, WANG Kai, YAO Zhanwei, LI Runbing, WANG Jin, ZHAN Mingsheng. Investigation of preparation and phase noise of Raman laser based on optical phase-locked loop[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 402 Copy Citation Text show less
    References

    [1] Wang J. Precision measurement with atom interferometry [J]. Chinese Physics B, 2015, 24(5): 93-102.

    [2] Wang J, Zhou L, Li R B, et al. Cold atom interferometers and their applications in precision measurements [J]. Frontiers of Physics, 2009, 4(2): 179-189.

    [4] Zhou L, Long S T, Tang B, et al. Test of equivalence principle at 108 level by a dual-species double-diffraction Raman atom interferometer [J]. Physical Review Letters, 2015, 115(1): 013004.

    [5] Schlippert D, Hartwig J, Albers H, et al. Quantum test of the universality of free fall [J]. Physical Review Letters, 2014, 112(20): 203002.

    [6] Tarallo M G, Mazzoni T, Poli N, et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects [J]. Physical Review Letters, 2014, 113(2): 023005.

    [7] Fixler J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the Newtonian constant of gravity [J]. Science, 2007, 315(5808): 74-77.

    [8] Rosi G, Sorrentino F, Cacciapuoti L, et al. Precision measurement of the Newtonian gravitational constant using cold atoms [J]. Nature, 2014, 510(7506): 518-521.

    [9] Weiss D S, Young B C, Chu S. Precision measurement of h/m Cs based on photon recoil using laser-cooled atoms and atom interferometry [J]. Applied Physics B-Laser and Optics, 1994, 59(3): 217-256.

    [10] Hu Z K, Sun B L, Duan X C, et al. Demonstration of an ultrahigh sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 043610.

    [11] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms [J]. Nature, 1999, 400(6747): 849-852.

    [12] Zhou L, Xiong Z Y, Yang W, et al. Measurement of local gravity via a cold atom interferometer [J]. Chinese Physics Letters, 2011, 28(1): 013701.

    [13] Zhou L, Xiong Z Y, Yang W, et al. Development of an atom gravimeter and of the 10-meter atom interferometer for precision gravity measurement [J]. General Relativity and Gravitation, 2011, 43(7): 1931-1942.

    [14] McGuirk J M, Foster G T, et al. Sensitive absolute-gravity gradiometry using atom interferometry [J]. Physical Review A, 2002, 65(3): 033608.

    [15] Duan X C, Zhou M K, Mao D K, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90(2): 023617.

    [16] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry [J]. Physical Review Letters, 2006, 97(1): 010402.

    [17] Stockton J K, Takase K, Kasevich M A. Absolute geodetic rotation measurement using atom interferometry [J]. Physical Review Letters, 2011, 107(13): 133001.

    [18] Yao Z W, Lu S B, et al. Continuous dynamic rotation measurements using a compact cold atom gyroscope [J]. Chinese Physics Letters, 2016, 33(8): 083701.

    [19] Marino A M, Stroud C R. Phase-locked laser system for use in atomic coherence experiments [J]. Review of Scientific Instruments, 2008, 79(1): 013104.

    [20] Appel J, MacRae A, Lvovsky A I. Versatile digital GHz phase lock for external cavity diode lasers [J]. Measurement Science and Technology, 2009, 20(5): 055302.

    [21] Xu Z X, Zhang X, Huang K K, et al. A digital optical phase-locked loop for diode lasers based on field programmable gate array [J]. Review of Scientific Instruments, 2012, 83(9): 093104.

    [22] Yim S H, Lee S B, Kwon T Y, et al. Optical phase locking of two extended-cavity diode lasers with ultra-low phase noise for atom interferometry [J]. Applied Physics B-Laser and Optics, 2014, 115(4): 491-495.

    [23] Schmidt M, Prevedelli M, Giorgini A, et al. A portable laser system for high-precision atom interferometry experiments [J]. Applied Physics B-Laser and Optics, 2011, 102(1): 11-18.

    [24] Wang P, Li R B, Yan H, et al. Demonstration of a Sagnac-type cold atom interferometer with stimulated Raman transitions [J]. Chinese Physics Letters, 2016, 24(1): 27-30.

    [25] Wang K, Yao Z W, Li R B, et al. Hybrid wide-band, low-phase-noise scheme for Raman lasers in atom interferometry by integrating an acousto-optic modulator and a feedback loop [J]. Applied Optics, 2016, 55(5): 989-992.

    [26] Shahriar M S, Turukhin A V, Liptay T, et al. Demonstration of injection locking a diode laser using a filtered electro-optic modulator sideband [J]. Optics Communications, 2000, 184(5): 457-462.

    [27] Xue H B, Feng Y Y, Wang X J, et al. Generation of Raman laser beams based on a sideband injection locking technique using a fiber electro-optical modulator [J]. Review of Scientific Instruments, 2013, 84(4): 046104.

    [28] Bouyer P, Gustavson T L, Haritos K G, et al. Microwave signal generation with optical injection locking [J]. Optics Letters, 1996, 21(18): 1502-1504.

    [29] Chen W L, Qi X H, Yi L, et al. Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser [J]. Optics Letters, 2008, 33(4): 357-359.

    [30] Li R B, Zhou L, Wang J, et al. Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions [J]. Optics Communications, 2009, 282(7): 1340-1344.

    CAO Lei, LU Sibing, WANG Kai, YAO Zhanwei, LI Runbing, WANG Jin, ZHAN Mingsheng. Investigation of preparation and phase noise of Raman laser based on optical phase-locked loop[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 402
    Download Citation