• Advanced Photonics Nexus
  • Vol. 2, Issue 5, 056007 (2023)
Jingshan Zhong1,†, Zhong Wen2, Quanzhi Li2, Qilin Deng2, and Qing Yang1,2,*
Author Affiliations
  • 1Zhejiang Lab, Research Center for Humanoid Sensing, Hangzhou, China
  • 2Zhejiang University, College of Optical Science and Engineering, International Research Center for Advanced Photonics, State Key Laboratory of Extreme Photonics and Instrumentation, Hangzhou, China
  • show less
    DOI: 10.1117/1.APN.2.5.056007 Cite this Article Set citation alerts
    Jingshan Zhong, Zhong Wen, Quanzhi Li, Qilin Deng, Qing Yang, "Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform," Adv. Photon. Nexus 2, 056007 (2023) Copy Citation Text show less
    References

    [1] S. Turtaev et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl., 7, 92(2018).

    [2] Z. Wen et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging. Nat. Photonics, 17, 679-687(2023).

    [3] T. Čižmár, K. Dholakia. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun., 3, 1027(2012).

    [4] I. N. Papadopoulos et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express, 4, 260-270(2013).

    [5] A. M. Caravaca-Aguirre, R. Piestun. Single multimode fiber endoscope. Opt. Express, 25, 1656-1665(2017).

    [6] S. Bianchi, R. Di Leonardo. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip, 12, 635-639(2012).

    [7] I. T. Leite et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics, 12, 33-39(2018).

    [8] D. Stellinga et al. Time-of-flight 3D imaging through multimode optical fibers. Science, 374, 1395-1399(2021).

    [9] S. M. Popoff et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [10] S. Popoff et al. Image transmission through an opaque material. Nat. Commun., 2, 81(2010).

    [11] Y. Choi et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901(2012).

    [12] Y. Choi et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett., 107, 023902(2011).

    [13] T. Čižmár, K. Dholakia. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express, 19, 18871-18884(2011).

    [14] S. Li et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci. Appl., 10, 88(2021).

    [15] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express, 20, 1733-1740(2012).

    [16] J. Yoon et al. Measuring optical transmission matrices by wavefront shaping. Opt. Express, 23, 10158-10167(2015).

    [17] A. Drémeau et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express, 23, 11898-11911(2015).

    [18] L. Deng et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system. Opt. Express, 26, 18436-18447(2018).

    [19] G. Huang et al. Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices. Photonics Res., 9, 34-42(2021).

    [20] M. N’Gom et al. Controlling light transmission through highly scattering media using semi-definite programming as a phase retrieval computation method. Sci. Rep., 7, 2518(2017).

    [21] G. Huang et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt. Express, 28, 9487-9500(2020).

    [22] C. A. Metzler et al. Coherent inverse scattering via transmission matrices: efficient phase retrieval algorithms and a public dataset, 1-16(2017).

    [23] S. Cheng, T. Zhong, P. Lai. Non-convex optimization for retrieving the complex transmission matrix of a multimode fiber, 1-5(2022).

    [24] Z. Wen et al. Fast volumetric fluorescence imaging with multimode fibers. Opt. Lett., 45, 4931-4934(2020).

    [25] M. Plöschner et al. Multimode fibre: light-sheet microscopy at the tip of a needle. Sci. Rep., 5, 18050(2015).

    [26] J. Bertolotti, O. Katz. Imaging in complex media. Nat. Phys., 18, 1008-1017(2022).

    [27] J. Carpenter, B. J. Eggleton, J. Schröder. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photonics, 9, 751-757(2015).

    [28] M. W. Matthès et al. Optical complex media as universal reconfigurable linear operators. Optica, 6, 465-472(2019).

    [29] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [30] S. Leedumrongwatthanakun et al. Programmable linear quantum networks with a multimode fibre. Nat. Photonics, 14, 139-142(2020).

    [31] N. H. Valencia et al. Unscrambling entanglement through a complex medium. Nat. Phys., 16, 1112-1116(2020).

    [32] E. Tseng et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    [33] H. Yu et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photonics, 11, 186-192(2017).

    [34] W. H. Lee. Computer-generated holograms: techniques and applications. Prog. Opt., 16, 119-232(1978).

    [35] J. Zhong et al. Nonlinear optimization algorithm for partially coherent phase retrieval and source recovery. IEEE Trans. Comput. Imaging, 2, 310-322(2016).

    [36] J. Nocedal, S. Wright. Numerical optimization. Springer Sci., 35, 7(1999).

    [37] D. C. Liu, J. Nocedal. On the limited memory BFGS method for large scale optimization. Math. Program., 45, 503-528(1989).

    [38] M. B. Shemirani et al. Principal modes in graded-index multimode fiber in presence of spatial-and polarization-mode coupling. J. Lightwave Technol., 27, 1248-1261(2009).

    [39] L.-H. Yeh et al. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt. Express, 23, 33214-33240(2015).

    [40] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [41] R. W. Gerchberg. A practical algorithm for the determination of plane from image and diffraction pictures. Optik, 35, 237-246(1972).

    [42] L. Waller et al. Phase and amplitude imaging from noisy images by Kalman filtering. Opt. Express, 19, 2805-2815(2011).

    [43] G. R. Brady, J. R. Fienup. Nonlinear optimization algorithm for retrieving the full complex pupil function. Opt. Express, 14, 474-486(2006).

    [44] E. J. Candes, X. Li, M. Soltanolkotabi. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory, 61, 1985-2007(2015).

    [45] A. Drémeau, F. Krzakala. Phase recovery from a Bayesian point of view: the variational approach, 3661-3665(2015).

    [46] E. J. Candes, T. Strohmer, V. Voroninski. Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math., 66, 1241-1274(2013).

    [47] G. Wang et al. Phase retrieval via reweighted amplitude flow. IEEE Trans. Signal Process., 66, 2818-2833(2018).

    [48] T. Goldstein, C. Studer. Phasemax: convex phase retrieval via basis pursuit. IEEE Trans. Inf. Theory, 64, 2675-2689(2018).

    [49] L. Gong et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [50] J. W. Goodman. Introduction to Fourier Optics(2005).

    Jingshan Zhong, Zhong Wen, Quanzhi Li, Qilin Deng, Qing Yang, "Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform," Adv. Photon. Nexus 2, 056007 (2023)
    Download Citation