• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207012 (2018)
Wang Xiaofei1、2, Sun Xianping1, Zhao Xiuchao1, Zhu Maohua1、2, Ye Chaohui1, and Zhou Xin1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207012 Cite this Article Set citation alerts
    Wang Xiaofei, Sun Xianping, Zhao Xiuchao, Zhu Maohua, Ye Chaohui, Zhou Xin. Progress in Biomagnetic Signal Measurements with Ultra-Sensitive Atomic Magnetometers[J]. Chinese Journal of Lasers, 2018, 45(2): 207012 Copy Citation Text show less
    References

    [2] Yang Y B, He Y Q, Yang J C. Comparative study on the diagnostic value of dynamic and conventional electrocardiogram in arrhythmia due to coronary heart disease[J]. China Medicine and Pharmacy, 5, 23-25(2015).

    [4] Baule G. McFee R. Detection of the magnetic field of the heart[J]. American Heart Journal, 66, 95-96(1963). http://europepmc.org/abstract/MED/14045992

    [5] Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents[J]. Science, 161, 784-786(1968). http://europepmc.org/abstract/med/5663803

    [6] Cohen D, Edelsack E A, Zimmerman J E. Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer[J]. Applied Physics Letters, 16, 278-280(1970). http://europace.oxfordjournals.org/lookup/external-ref?access_num=10.1063/1.1653195&link_type=DOI

    [7] Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer[J]. Science, 175, 664-666(1972). http://www.jstor.org/stable/1732955

    [8] Wikswo J P, Barach J P, Freeman J A. Magnetic field of a nerve impulse: first measurements[J]. Science, 208, 53-55(1980). http://www.jstor.org/stable/1683811

    [9] Drung D. High-perforrmance DC SQUID read-out electronics[J]. Physica C: Superconductiveity, 368, 134-140(2002).

    [10] Allred J C, Lyman R N, Kornack T W et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 89, 130801(2002). http://europepmc.org/abstract/med/12225013

    [11] Kominis I K, Kornack T W, Allred J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003). http://www.ncbi.nlm.nih.gov/pubmed/12686995

    [12] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 97, 151110(2010). http://scitation.aip.org/content/aip/journal/apl/97/15/10.1063/1.3491215

    [13] Bell W E, Bloom A L. Optically driven spin precession[J]. Physical Review Letters, 6, 280-281(1961).

    [14] Liu G B, Li X F, Sun X P et al. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature[J]. Journal of Magnetic Resonance, 237, 158-162(2013). http://www.sciencedirect.com/science/article/pii/S1090780713002632

    [15] Xu S, Rochester S M, Yashchuk V V. et al. Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation[J]. Review of Scientific Instruments, 77, 083106(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5002979

    [16] Bison G, Wynands R, Weis A. A laser-pumped magnetometer for the mapping of human cardiomagnetic fields[J]. Applied Physics B, 76, 325-328(2003). http://link.springer.com/article/10.1007/s00340-003-1120-z

    [17] Wyllie R, Kauer M W, Wakai R T et al. Optical magnetometer array for fetal magnetocardiography[J]. Optics Letters, 37, 2247-2249(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3386557/

    [18] Xia H, Baranga B A, Hoffman D et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 89, 211104(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4823349

    [19] Johnson F C N, Schwindt P D, Weisend M. Multi-sensor magnetoencephalography with atomic magnetometers[J]. Physics in Medicine & Biology, 58, 6065-6077(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC4030549/

    [20] Seltzer S J. Developments in alkali-metal atomic magnetometry[D]. Princeton: Princeton University, 1-73(2008).

    [21] Happer W. Opticalpumping[J]. Review of Modern Physics, 44, 169-249(1972).

    [22] Vasilakis G. Precision measurements of spin interactions with high density atomic vapors[D]. Princeton: Princeton University, 23-25(2011).

    [23] Happer W. Wijngaarden W A V. An optical pumping primer[J]. Hyperfine Interactions, 38, 435-470(1987).

    [24] Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei[J]. Reviews of Modern Physics, 69, 629-642(1997). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RMPHAT000069000002000629000001&idtype=cvips&gifs=Yes

    [25] Dehmelt H G. Modulation of a light beam by processing absorbing atoms[J]. Physical Review, 105, 1924-1925(1957). http://prola.aps.org/abstract/PR/v105/i6/p1924_1

    [26] Budker D, Gawlik W, Kimball D F et al. Resonant nonlinear magneto-optical effects in atoms[J]. Review of Modern Physics, 74, 1153-1201(2002). http://arxiv.org/abs/physics/0203077

    [27] Belfi J, Bevilacqua G, Biancalana V. et al. Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment[J]. Journal of the Optical Society of America B, 24, 2357-2362(2007). http://www.opticsinfobase.org/abstract.cfm?id=140995

    [28] Liu G B, Sun X P, Gu S H et al. Progress in high sensitive atomic magnetometer[J]. Physics, 41, 803-810(2012).

    [29] Schwindt P D, Lindseth B, Knappe S et al. Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique[J]. Applied Physics Letters, 90, 081102(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4828226

    [30] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 31, 273-276(1973). http://adsabs.harvard.edu/abs/1973PhRvL..31..273H

    [31] Happer W, Tam A C. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 16, 1877-1891(1977). http://adsabs.harvard.edu/abs/1977PhRvA..16.1877H

    [32] Williamson S J, Kaufman L. Biomagnetism[J]. Journal of Magnetism and Magnetic Materials, 22, 129-201(1981).

    [33] Kandori A, Miyashita T, Tsukada K. Cancellation technique of external noise inside a magnetically shielded room used for biomagnetic measurements[J]. Review of Scientific Instruments, 71, 2184-2190(2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4997803

    [34] Kraus R H, Espy M A, Matlachov A et al. -06-01[P]. electroencephalography with isolated reference sensors: US 7729740.(2010).

    [35] Seltzer S J, Romalis M V. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer[J]. Applied Physics Letters, 85, 4804-4806(2004). http://scitation.aip.org/content/aip/journal/apl/85/20/10.1063/1.1814434

    [36] Fang J, Wang T, Quan W. et al. In situ magnetic compensation for potassium spin-exchange relaxation-free magnetometer considering probe beam pumping effect[J]. Review of Scientific Instruments, 85, 063108(2014). http://scitation.aip.org/content/aip/journal/rsi/85/6/10.1063/1.4881685

    [37] Takiya T, Uchiyama T. Development of active shielding-type MI gradiometer and application for magnetocardiography[J]. IEEE Transactions on Magnetics, 53, 4002804(2017). http://ieeexplore.ieee.org/document/7976311/

    [38] Khan S, Cohen D. Note: magnetic noise from the inner wall of a magnetically shielded room[J]. Review of Scientific Instruments, 84, 056101(2013). http://europepmc.org/abstract/med/23742599

    [39] Lee S K, Romalis M V. Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry[J]. Journal of Applied Physics, 103, 084904(2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4947754

    [40] Mhaskar R, Knappe S, Kitching J. A low-power, high-sensitivity micromachined optical magnetometer[J]. Applied Physics Letters, 101, 241105(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6379325

    [41] Sheng D, Perry A R, Krzyzewski S P. et al. A microfabricated optically-pumped magnetic gradiometer[J]. Applied Physics Letters, 110, 031106(2017). http://www.ncbi.nlm.nih.gov/pubmed/28179732

    [42] Shah V K, Wakai R T. A compact, high performance atomic magnetometer for biomedical applications[J]. Physics in Medicine & Biology, 58, 8153-8161(2013). http://europepmc.org/abstract/med/24200837

    [43] Kim K, Begus S, Xia H et al. Multi-channel atomic magnetometer for magnetoencephalography: a configuration study[J]. Neuroimage, 89, 143-151(2014). http://www.ncbi.nlm.nih.gov/pubmed/24185014

    [44] Knappe S, Sander T H, Kosch O. et al. Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications[J]. Applied Physics Letters, 97, 133703(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5593024

    [45] Wyllie R, Kauer M W, Smetana G S et al. Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array[J]. Physics in Medicine & Biology, 57, 2619-2632(2012). http://europepmc.org/articles/PMC3368342

    [46] Alem O, Sander T H, Mhaskar R. et al. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers[J]. Physics in Medicine & Biology, 60, 4797-4811(2015). http://www.ncbi.nlm.nih.gov/pubmed/26041047

    [47] Eswaran H, Escalona-Vargas D, Bolin E H. et al. Fetal magnetocardiography using optically pumped magnetometers a more adaptable and less expensive alternative[J]. Prenatal Diagnosis, 37, 193-196(2017). http://europepmc.org/abstract/MED/27891637

    [48] Sander T H, Preusser J, Mhaskar R et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 3, 981-990(2012). http://www.europepmc.org/articles/PMC3342203/

    [49] Sheng J, Wan S, Sun Y. et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. Review of Scientific Instruments, 88, 094304(2017). http://www.ncbi.nlm.nih.gov/pubmed/28964239

    [50] Boto E, Meyer S S, Shah V. et al. A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers[J]. Neuroimage, 149, 404-414(2017). http://europepmc.org/abstract/MED/28131890

    [51] Jensen K, Budvytyte R, Thomas R A et al. Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity magnetometers[J]. Scientific Reports, 6, 29638(2016). http://europepmc.org/articles/PMC4945862/

    [52] Cohen D, Edelsack E A, Zimmerman J E. Magnetocardiograms taken inside a shielded room with a superconducting point-contact magnetometer[J]. Applied Physics Letters, 16, 278-280(1970). http://europace.oxfordjournals.org/lookup/external-ref?access_num=10.1063/1.1653195&link_type=DOI

    [53] Bison G, Wynands R, Weis A. Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor[J]. Optics Express, 11, 904-909(2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000005000010000138000001&idtype=cvips&gifs=Yes

    [54] Bison G, Castagna N, Hofer A et al. A room temperature 19-channel magnetic field mapping device for cardiac signals[J]. Applied Physics Letters, 95, 173701(2009). http://scitation.aip.org/content/aip/journal/apl/95/17/10.1063/1.3255041

    [55] Kamada K, Ito Y, Kobayashi T. Human MCG measurements with a high-sensitivity potassium atomic magnetometer[J]. Physiological Measurement, 33, 1063-1071(2012). http://www.ncbi.nlm.nih.gov/pubmed/22621881

    [56] Stinstra J, Golbach E, Van L P. et al. Multicentre study of fetal cardiac time intervals using magnetocardiography[J]. BJOG: An International Journal of Obstetrics & Gynaecology, 109, 1235-1243(2002). http://onlinelibrary.wiley.com/doi/10.1046/j.1471-0528.2002.01057.x/full

    [57] Baillet S. Magnetoencephalography for brain electrophysiology and imaging[J]. Nature Neuriscience, 20, 327-339(2017). http://europepmc.org/abstract/MED/28230841

    [58] Hämäläinen M, Hari R, Ilmoniemi R J. et al. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain[J]. Review of Modern Physics, 65, 413-497(1993). http://amstat.tandfonline.com/servlet/linkout?suffix=cit0009&dbid=16&doi=10.1080%2F01621459.2015.1054488&key=10.1103%2FRevModPhys.65.413

    [59] Hari R, Salmelin R. Magnetoencephalography: from SQUIDs to neuroscience. Neuroimage 20th anniversary special edition[J]. Neuroimage, 61, 386-396(2012). http://www.ncbi.nlm.nih.gov/pubmed/22166794

    [60] Johnson C. Schwindt P D D, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 97, 243703(2010).

    [61] Alem O, Benison A M, Barth D S. et al. Magnetoencephalography of epilepsy with a microfabricated atomic magnetrode[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 34, 14324-14327(2014). http://europepmc.org/abstract/med/25339745

    [62] Kamada K. Sato1 D, Ito Y, et al. Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer[J]. Japanese Journal of Applied Physics, 54, 026601(2015).

    [63] Boto E, Bowtell R, Krüger P. et al. On the potential of a new generation of magnetometers for MEG: a beamformer simulation Study[J]. Plos One, 11, 1-24(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5001648/?report=classic

    [65] Krnjevic K. Some observations on perfused frog sciatic nerves[J]. Journal of Physiology, 123, 338-356(1954). http://europepmc.org/abstract/MED/13143515

    [66] Wijesinghe R S, Gielen F L, Wikswo J P. Jr. A model for compound action potentials and currents in a nerve bundle III: a comparison of the conduction velocity distributions calculated from compound action currents and potentials[J]. Annals of Biomedical Engineering, 19, 43-72(1991). http://link.springer.com/article/10.1007/BF02368462

    [67] Tasaki I. Properties of myelinated fibers in frog sciatic nerve and in spinal cord as examined with micro-electrodes[J]. Japanese Journal of Physiology, 3, 73-94(1952). http://europepmc.org/abstract/MED/13034379

    [68] Shanes A M. Electrical phenomena in nerve III. Frog sciatic nerve[J]. Journal of Cellular Physiology, 38, 17-40(1951). http://www.ncbi.nlm.nih.gov/pubmed/14873754

    [69] Frankenhaeuser B, Hodgkin A L. The after-effects of impulses in the giant nerve fibres of Loligo[J]. Journal of Physiology, 131, 341-376(1956). http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1956.sp005467/abstract

    [70] Xu S, Yashchuk V V, Donaldson M H. et al. Magnetic resonance imaging with an optical atomic magnetometer[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 12668-12671(2006). http://www.jstor.org/stable/30051066

    Wang Xiaofei, Sun Xianping, Zhao Xiuchao, Zhu Maohua, Ye Chaohui, Zhou Xin. Progress in Biomagnetic Signal Measurements with Ultra-Sensitive Atomic Magnetometers[J]. Chinese Journal of Lasers, 2018, 45(2): 207012
    Download Citation