• Acta Optica Sinica
  • Vol. 33, Issue 12, 1228002 (2013)
Li Hui1、2、*, Wu Yuntao1、2, Pan Fan3, Cai Dunbo1、2, and Zhang Yanduo1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201333.1228002 Cite this Article Set citation alerts
    Li Hui, Wu Yuntao, Pan Fan, Cai Dunbo, Zhang Yanduo. Study on Electrically Tunable Shack-Hartmann Wavefront Sensor Based on Liquid Crystal[J]. Acta Optica Sinica, 2013, 33(12): 1228002 Copy Citation Text show less
    References

    [1] Zhang Xiang, Su Likun, Cai Qing. Analysis of thermal effect and experimental test of beam wavefront aberration in all solid-state NdYAG laser [J]. Acta Optica Sinica, 2010, 30(3): 802-807.

    [2] Ma Haotong, Zhou Pu, Wang Xiaolin, et al.. Near-field beam shaping based on liquid crystal spatial light modulator [J]. Acta Optica Sinica, 2010, 30(7): 2032-2036.

    [3] Yu Xiaochen, Hu Jiasheng, Wang Lianbao. Laser beam shaping based on liquid crystal spatial light modulator [J]. Acta Optica Sinica, 2012, 32(5): 0514001.

    [4] Bai Fuzhong, Rao Changhui. Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using self-referencing interferometer wavefront sensor [J]. Acta Physica Sinica, 2011, 59(11): 8280-8286.

    [5] Qi Yue, Kong Ningning, Li Dayu, et al.. High resolution open-loop adaptive optics system for retinal imaging based on liquid crystal spatial light modulator [J]. Acta Optica Sinica, 2012, 32(10): 1011003.

    [6] Cheng Shaoyuan, Cao Zhaoliang, Hu Lifa, et al.. Measurement of wavefront aberrations of human eyes with Shack-Hartmann wavefront sensor [J]. Optics and Precision Engineering, 2010, 18(5): 1060-1067.

    [7] J Vargas, L Gonzalez Fernandez, J A Quiroga, et al.. Shack-Hartmann centroid detection method based on high dynamic range imaging and normalization techniques [J]. Appl Opt, 2010, 49(13): 2409-2416.

    [8] S Erkin, J G Joseph, M M Rhonda, et al.. Adaptive cross-correlation algorithm for extended scene Shack-Hartmann wavefront sensing [J]. Opt Lett, 2008, 33(3): 213-215.

    [9] Zou Weiyao, Zhang Zhenchao. Generalized wavefront reconstruction algorithm applied in a Shack-Hartmann test [J]. Appl Opt, 2000, 39(2): 250-268.

    [10] L Seifert, J Liesener, H J Tiziani. The adaptive Shack-Hartmann sensor [J]. Opt Commun, 2003, 216(4-6): 313-319.

    [11] H Choo, R S Muller. Addressable microlens array to improve dynamic range of Shack-Hartmann sensors [J]. J Microelectromech Syst, 2006, 15(6): 1555-1567.

    [12] Yu Hongbin, Zhou Guangya, F S Chau, et al.. A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array [J]. J Micromech Microeng, 2008, 18(10): 105017.

    [13] Ren Hongwen, Xu Su, Y J Lin, et al.. Adaptive focus lenses [J]. Opt Photon News, 2008, 19(10): 42-47.

    [14] Zhang Menghua, Zheng Jihong, Tang Pingyu, et al.. High efficiency nano-silver-doped holographic polymer dispersed liquid crystal grating [J]. Acta Optica Sinica, 2013, 33(1): 0105002.

    [15] Li Hui, Zhang Xinyu, Zhang Tianxu, et al.. Optical imaging characteristics of a new liquid crystal lens [J]. J Infrared Millim Waves, 2009, 28(6): 428-431.

    [16] Li Hui, Liu Kan, Zhang Xinyu, et al.. 128×128 elements frequency driven liquid crystal lens array with tunable focal length [J]. Acta Optica Sinica, 2010, 30(1): 218-223.

    [17] Li Hui, Zhang Xinyu, Zhang Tianxu, et al.. Electrically driving and controlling adaptive 128 element×128 element liquid crystal micro-lens array with tunable focal length [J]. Optics and Precision Engineering, 2009, 17(10): 2351-2358.

    CLP Journals

    [1] Yue Dan, Xu Shuyan, Nie Haitao, Ma Hongcai, Liu Nannan. Error Analysis and Eliminate Methods for Wavefront Detection Based on Phase Diversity Algorithm[J]. Acta Optica Sinica, 2016, 36(1): 111003

    Li Hui, Wu Yuntao, Pan Fan, Cai Dunbo, Zhang Yanduo. Study on Electrically Tunable Shack-Hartmann Wavefront Sensor Based on Liquid Crystal[J]. Acta Optica Sinica, 2013, 33(12): 1228002
    Download Citation