• Journal of Inorganic Materials
  • Vol. 36, Issue 1, 69 (2021)
Yumin XIAO1, Bin Li1, Lizhao QIN1、*, Hua LIN1, Qing LI1, and Bin LIAO2
Author Affiliations
  • 1Faculty of Materials & Energy, Southwest University, Chongqing 400715, China;
  • 2College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
  • show less
    DOI: 10.15541/jim20200180 Cite this Article
    Yumin XIAO, Bin Li, Lizhao QIN, Hua LIN, Qing LI, Bin LIAO. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source[J]. Journal of Inorganic Materials, 2021, 36(1): 69 Copy Citation Text show less
    References

    [1] X CHEN, D ZHANG, X ZHANG et al. Synthesis and growth mechanism of Mn-doped nanodot embedded silica nanowires. Physica B. Condensed Matter, 571, 10-17(2019).

    [2] J LIU, P WANG, W QU et al. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Applied Catalysis B. Environmental, 257, 117880(2019).

    [3] Z PEI L, F WANG J, J YANG L et al. Preparation of copper germanate nanowires with good electrochemical sensing properties. Crystal Research and Technology, 46, 103-112(2011).

    [4] S TAWALE J, A KUMAR, R DHAKATE S et al. Facile synthesis of bulk SnO2 and ZnO tetrapod based graphene nanocomposites for optical and sensing application. Materials Chemistry and Physics, 201, 372-383(2017).

    [5] A RAHMAN M, P THOMAS J, A LEUNG K T. Delaminated defect-rich ZrO2 hierarchical nanowire photocathode for efficient photoelectrochemical hydrogen evolution. Advanced Energy Materials, 8, 1701234(2018).

    [6] J LIU, J JIANG, C CHENG et al. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Advanced Materials, 23, 2076-2081(2011).

    [7] M HUANG, J CAO, X MENG et al. Preparation of SiO2 nanowires from rice husks by hydrothermal method and the RNA purification performance. Chemical Physics Letters, 662, 42-46(2016).

    [8] R YI, J FENG, D LV et al. Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy, 2, 498-504(2013).

    [9] Y CONG, Y HE, B DONG et al. Long afterglow properties of Zn2GeO4:Mn 2+, Cr 3+ phosphor. Optical Materials, 42, 506-510(2015).

    [10] D JAIME, H PEDRO, M BIANCHI. Correlative study of vibrational and luminescence properties of Zn2GeO4 microrods. Physica Status Solidi. (a), 215, 1800270(2018).

    [11] F CHEN, M JU, L GUTSEV G et al. Structure and luminescence properties of a Nd 3+doped Bi4Ge3O12 scintillation crystal: new insights from a comprehensive study. Journal of Materials Chemistry C, 5, 3079-3087(2017).

    [12] R RODRIGUEZ J, C BELMAN-RODRIGUEZ, A AGUILA S et al. Bismuth germanate (Bi4Ge3O12), a promising high-capacity lithium-ion battery anode. Chemical Communications, 54, 11483-11486(2018).

    [13] Z JIA, X JIANG, Z LIN et al. PbTeGeO6: polar rosiaite-type germanate featuring a two dimensional layered structure. Dalton Transactions, 47, 16388-16392(2018).

    [14] E AVALOS C, J WALDER B, J VIGER-GRAVEL et al. Chemical exchange at the ferroelectric phase transition of lead germanate revealed by solid state (207) Pb nuclear magnetic resonance. Physical Chemistry Chemical Physics. PCCP, 21, 1100-1109(2019).

    [15] A JAYARAMAN, Y WANG S, C MING L et al. Pressure-induced intercalation and amorphization in the spin-peierls compound CuGeO3. Physical Review Letters, 75, 2356-2359(1995).

    [16] A MONGE M, E GUTIERREZ-PUEBLA, C CASCALES et al. A copper germanate containing potassium in its two-dimensional channel network. Chemistry Material, 12, 1926-1930(2000).

    [17] M BRADEN, G WILKENDORF, J LORENZANA et al. Structural analysis of CuGeO3 relation between nuclear structure and magnetic interaction. Physical Review B, 54, 1105-1116(1996).

    [18] SONG RUI QI, XU AN WU, H YU S. Layered copper metagermanate nanobelts hydrothermal synthesis. Journal of the American Chemical Society, 129, 4152-4153(2007).

    [19] Z CHEN, Y YAN, S XIN et al. Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. Journal of Materials Chemistry A, 1, 11404(2013).

    [20] S WU, R WANG, Z WANG et al. CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. Nanoscale, 6, 8350(2014).

    [21] D KWON, S CHOI, G WANG et al. Germanium-based multiphase material as a high-capacity and cycle-stable anode for lithium-ion batteries. RSC Advances, 6, 89176-89180(2016).

    [22] Q LI Z, L ZHANG, Y SONG et al. Size-controlled synthesis and magnetic properties of copper germanate nanorods. Observation of size-induced quenching of the spin-Peierls transition. CrystEngComm, 16, 850-857(2014).

    [23] Z PEI L, J YANG L, Y YANG et al. Large-scale synthesis and growth conditions dependence on the formation of CuGeO3 nanowires. Materials Chemistry and Physics, 130, 104-112(2011).

    [24] Z PEI L, Q PEI Y, Y YANG et al. Dependence of growth conditions on copper germanate nanowires and their electrochemical characteristics. Materials Science-Poland, 29, 241-247(2012).

    [25] R O'NEAL K, A AL WAHISH, Z LI et al. Vibronic coupling and band gap trends in CuGeO3 nanorods. Physical Review B, 96, 075437(2017).

    [26] L FARQUHAR M, M CHARNOCK J, R ENGLAND K E et al. Adsorption of Cu(II) on the (0001) plane of mica: a REFLEXAFS and XPS study. Journal of Colloid & Interface Science, 177, 561-567(1996).

    [27] F WANG, Y XING, Z SU et al. Single-crystalline CuGeO3 nanorods: synthesis, characterization and properties. Materials Research Bulletin, 48, 2654-2660(2013).

    [28] D WAGNER C, M RIGGS W, E DAVIS L et al. Handbook of X-ray Photoelectron Spectroscopy.. USA: Perkin-Elmer Corporation, 31-32(1979).

    [29] Z PEI L, S ZHAO H, F ZHANG Q et al. Low temperature growth and characterizations of single crystalline CuGeO3 nanowires. CrystEngComm, 11, 1696(2009).

    [30] Y LI, H LIAO, Y DING et al. Solvothermal elemental direct reaction to CdE (E=S, Se, Te) semiconductor nanorod. Inorganic Chemistry, 38, 1382-1387(1999).

    [31] X DENG Z, C WANG. Structure-directing coordination template effect of ethylenediamine. Inorganic Chemistry, 41, 869-873(2002).

    [32] D ZHAO X, L LI, Y LI. Novel inorganic/organic-layered structures: Crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E=S, Se, Te) nanoroods in ethylenediamine. Inorganic Chemistry, 42, 2331-2341(2003).

    [33] S BISWAS, S KAR, S SANTRA et al. Solvothermal synthesis of high-aspect ratio alloy semiconductor nanowires Cd1-xZnxS, a case study. Journal of Physical Chemistry C, 113, 3617-3624(2009).

    [34] H LEE G, C SUNG M, C KIM J et al. Synergistic effect of CuGeO3/graphene composites for efficient oxygen electrode electrocatalysts in Li-O2 batteries. Advanced Energy Materials, 8, 1801930(2018).

    [35] R O'NEAL K, A AL-WAHISH, Q LI Z et al. Charge and bonding in CuGeO3 nanorods. Nano Letters, 18, 3428-3434(2018).

    [36] Y YANG, Y CONG, M ZHU Z et al. Synthesis and luminescence properties of Zn2GeO4 nanorods.. Chinese Journal of Inorganic Chemistry, 33, 1757-1762(2017).

    [37] R GRIESSER, H SIGEL. Ternary complexes in solution. XI. complex formation between the cobalt(ii)-, nickel(ii)-, copper(ii)-, and zinc(II)-2,2′-Bipyridyl 1 : 1 complexes and ethylenediamine, glycinate, or pyrocatecholate1. Inorganic Chemistry, 10, 2229-2232(1971).

    Yumin XIAO, Bin Li, Lizhao QIN, Hua LIN, Qing LI, Bin LIAO. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source[J]. Journal of Inorganic Materials, 2021, 36(1): 69
    Download Citation