• Infrared and Laser Engineering
  • Vol. 46, Issue 12, 1202001 (2017)
Liu Dong*, Liu Qun, Bai Jian, and Zhang Yupeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201746.1202001 Cite this Article
    Liu Dong, Liu Qun, Bai Jian, Zhang Yupeng. Data processing algorithms of the space-borne lidar CALIOP: a review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001 Copy Citation Text show less
    References

    [1] Shi Guangyu, Wang Biao, Zhang Hua, et al. The radiative and climatic effects of atmospheric aerosols [J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 826-840. (in Chinese)

    [2] Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(11): 2310-2323.

    [3] Lu Naimeng, Min Min, Dong Lixin, et al. Development and prospect of spaceborne LiDAR for atmospheric detection[J]. Journal of Remote Sensing, 2016, 20(1): 1-10. (in Chinese)

    [4] Illingworth A J, Barker H W, Beljaars A, et al. The EarthCARE Satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation[J]. Bulletin of the American Meteorological Society, 2015, 96(8): 1311-1332.

    [5] National Aeronautics and Space Administration, Goddard Space Flight Center. Aerosol/Cloud/Ecosystems Mission[FB/OL]. (2016-06-10). http://acemission.gsfc.nasa.gov/payload.html.

    [6] Chen Weibiao, Liu Jiqiao. Concept design of spaceborne atmospheric aerosol and carbon lidar[C]//The 4th International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS′15), 2015.

    [7] Zheng Shaoqing, Xu Jun, He Youjiang, et al. Satellite Cloud-Aerosol Lidar-CALIOP: capability, product and its applications[J]. Journal of Environmental Engineering Technology, 2014, 4(4): 313-320. (in Chinese)

    [8] Hunt W H, Winker D M, Vaughan M A, et al. CALIPSO lidar description and performance assessment[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1214-1228.

    [9] Liu Gang, Shi Weizhe, You Rui. Cloud-aerosol lidar of America [J]. Spacecraft Engineering, 2008, 17(1): 78-84. (in Chinese)

    [10] Winker D M, Hostetler C A, Vaughan M A, et al. CALIOP algorithm theoretical basis document part 1: CALIOP instrument, and algorithms overview, PC-SCI-202 Part 1, 2.0[R]. Hampton, VA: NASA Langley Research Center, 2006.

    [11] Hostetler C A, Liu Z, Reagan J. CALIOP algorithm theoretical basis document calibration and Level 1 data products. CALIOP Instrument, and Algorithm Overview, PC-SCI-202, 1.0[R]. Hampton, VA: NASA Langley Research Center, 2006.

    [12] Reagan M J, Wang X, Osborn M J. Spaceborne lidar calibration from cirrus and molecular backscatter returns[J].IEEE Trans Geosci Remote Sens, 2002, 40: 2285-2290.

    [13] Vernier J P, Pommereau J P, Garnier A, et al. Tropical stratospheric aerosol layer from CALIPSO lidar observations[J]. J Geophys Res, 2009, 114(D4):144-153.

    [14] Powell K A, Hostetler C A, Liu Z, et al. CALIPSO lidar calibration algorithms. part I: nighttime 532-nm parallel channel and 532-nm perpendicular channel[J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(10): 2015-2033.

    [15] Vaughan M A, Liu Z, Mcgill M J, et al. On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP′s 1 064 nm calibration assumptions using cloud physics lidar measurements[J]. Journal of Geophysical Research Atmospheres, 2010, 115: D14: 1-17.

    [16] Vaughan M, Garnier A, Liu Z, et al. Chaos, consternation and CALIPSO calibration: new strategies for calibrating the CALIOP 1064 nm channel[C]//Proceedings of the 26th International Laser Radar Conference(ILRC), 2012.

    [17] Powell K A, Vaughan M A, Rogers R R, et al. The CALIOP 532-nm channel daytime calibration: Version 3 algorithm[C]//Proceedings of the 25th International Laser Radar Conference (ILRC), 2010: 1367-1370.

    [18] Winker D M, Couch R H, McCormick M P. An overview of LITE: NASA′s lidar in-space technology experiment [J]. Proceedings of the IEEE, 1996, 84(2): 164-180.

    [19] Abshire J B, Sun X, Riris H, et al. Geoscience Laser Altimeter System (GLAS) on the ICESat mission: on-orbit measurement performance[J]. Geophysical Research Letters, 2005, 32(21): 3.

    [20] Vaughan M A, Winker D M, Powell K A. CALIOP algorithm theoretical basis document-part 2: detection and layer properties algorithms, PC-SCI-202 Part 2, 1.0[R]. Hampton, VA: NASA Langley Research Center, 2005.

    [21] Yu Nana. Cloud-aerosol satellite borne lidar data retrieval algorithm preliminary study[D]. Qingdao: Ocean University of China.2012. (in Chinese)

    [22] Vaughan M A, Powell K A, Kuehn R E. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 2034-2050.

    [23] Liu Z, Omar A H, Hu Y. CALIOP algorithm theoretical basis document-part3: scene classification algorithms, PC-SCI-202 Part 3, 1.0[R]. Hampton, VA: NASA Langley Research Center, 2005.

    [24] Liu Z, Vaughan M A, Winker D M, et al. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data [J]. Journal of Geophysical Research Atmospheres, 2004, 109(15): 1255-1263.

    [25] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: the software package OPAC [J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831-844.

    [26] Liu Z, Vaughan M, Winker D, et al. The CALIPSO lidar cloud and aerosol discrimination: version 2 algorithm and initial assessment of performance[J]. Journal of Atmospheric & Oceanic Technology, 2008, 26(7): 1198-1213.

    [27] Liu Z, Kuehn R, Vaughan M, et al. The CALIPSO cloud and aerosol discrimination version3 algorithm and test results[C]//Proceedings of the 25th International Laser Radar Conference(ILRC), 2010: 5-9.

    [28] Omar A H, Jae-Gwang W, Winker D M, et al. Development of global aerosol models using cluster analysis of aerosol robotic network (AERONET) measurements[J]. J Geophys Res, 2005, 110(10): 10-14.

    [29] Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D16): 20673-20696.

    [30] Masonis S J, Anderson T L, Covert D S, et al. A study of the extinction-to-backscatter ratio of marine aerosol during the shoreline environment aerosol study[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(10): 1388-1402.

    [31] Kalashnikova O V, Sokolik I N. Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths[J]. Geophysical Research Letters, 2002, 29(10): 38-1-38-4.

    [32] Anderson T L, Masonis S J, Covert D S, et al. In situ measurement of the aerosol extinction-to-backscatter ratio at a polluted continental site[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D22): 26907-26915.

    [33] Omar A H, Winker D M, Kittaka C, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm[J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(10): 1994-2014.

    [34] Toshiyuki M, Hajime O, Naoki K, et al. Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D24): 31781-31792.

    [35] Gobbi G P, Barnaba F, Giorgi R, et al. Altitude-resolved properties of a saharan dust event over the mediterranean[J]. Atmospheric Environment, 2000, 34(29-30): 5119-5127.

    [36] Tetsu S, Takashi S, Keiichiro H, et al. Raman lidar and aircraft measurements of tropospheric aerosol particles during the Asian dust event over central Japan: Case study on 23 April 1996[J]. Journal of Geophysical Research, 2003, 108(D12): DOI10.1029/2002JD003150.

    [37] Barnaba F, Gobbi G P. Modeling the aerosol extinction versus backscatter relationship for lidar applications: maritime and continental conditions[J]. Journal of Atmospheric & Oceanic Technology, 2004, 21(3): 428-442.

    [38] Reagan J A, Thome K J, Powell D M. Lidar aerosol ratio: measurements and models[C]//Geoscience and Remote Sensing Symposium, 2001. IGARSS′01. IEEE 2001 International, 2001: 84-87.

    [39] Hu Y. Depolarization ratio-effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination[J]. Geophysical Research Letters, 2007, 34(11):224-238.

    [40] Hu Y, Liu Z, Winker D, et al. Simple relation between lidar multiple scattering and depolarization for water clouds[J]. Optics Letters, 2006, 31(12): 1809-1811.

    [41] Hu Y, Vaughan M, Liu Z, et al. The depolarization- attenuated backscatter relation: CALIPSO lidar measurements vs. theory[J]. Optics Express, 2007, 15(9): 5327-5332.

    [42] Hu Y, Winker D, Vaughan M. CALIPSO/CALIOP cloud phase discrimination algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 2293-2309.

    [43] Hu Y X, Winker D, Yang P, et al. Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 70(4-6): 569-579.

    [44] Hu Y, Hosteler L. Using backscattered circular component for shape determination: A theoretical study[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 79:757.

    [45] Lu Xiaomei, Jiang Yuesong. Statistical properties of clouds over Beijing derived from CALIPSO lidar measurements[J]. Chinese Journal of Geophysics, 2011, 54(10): 2487-2494. (in Chinese)

    [46] Collis R T H, Russell P B. Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption [M]. Berlin, Heidelberg: Springer, 1976: 71-151.

    [47] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211-220.

    [48] Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 652-653.

    [49] Young S A, Vaughan M A, Kuehn R E, et al. CALIOP algorithm theoretical basis document-part4: extinction retrieval Algorithms, PC-SCI-202 Part 4, 1.0[R]. Hampton, VA: NASA Langley Research Center, 2008.

    [50] Young S A, Vaughan M A. The retrieval of profiles of particulate extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: algorithm description[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(6): 1105-1119.

    [51] National Aeronautics and Space Administratio. CALIPSO: data user′s guide-data product descriptions-lidar Level 3 aerosol profile monthly product[EB/OL].[2017-08-27].https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/data summaries/l3/index.php.

    CLP Journals

    [1] Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002

    [2] Yuting Tao, Hongkai Zhao, Yudi Zhou, Wenqi Zhuo, Qun Liu, Xiaoyu Cui, Bin Liu, Chengfeng Le, Sunqiang Pan, Chong Liu, Dong Liu. Overview of inversion methods of ocean subsurface particulate backscattering coefficient by using CALIOP data[J]. Infrared and Laser Engineering, 2021, 50(6): 20211037

    Liu Dong, Liu Qun, Bai Jian, Zhang Yupeng. Data processing algorithms of the space-borne lidar CALIOP: a review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001
    Download Citation