• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 1, 2242002 (2022)
P. A. Dyachenko 1、2、*, [in Chinese]1、2, [in Chinese]3, [in Chinese]1, and [in Chinese]2、4、5
Author Affiliations
  • 1Saratov State University, Saratov, Russia
  • 2Laboratories of Biophotonics and Laser Molecular, Imaging and Machine Learning, National Research Tomsk State University, Tomsk, Russia
  • 3Saratov State Medical University, Saratov, Russia
  • 4Institute of Precision Mechanics and Control, Russian Academy of Sciences, Russia
  • 5A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
  • show less
    DOI: 10.1142/s1793545822420020 Cite this Article
    P. A. Dyachenko , [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Laser speckle contrast imaging for monitoring of acute pancreatitis at ischemia–reperfusion injury of the pancreas in rats[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2242002 Copy Citation Text show less
    References

    [1] L. Rodrigo (Ed.), Acute Pancreatitis, in Microcirculatory Disturbances in the Pathogenesis of Acute Pancreatitis, Chap. 11 pp. 141–159, InTech (2011).

    [2] R. V. Vashetko, A. D. Tolstoy, A. A. Kurygin, Yu. M. Stoyko, V. B. Krasnorogov, Acute pancreatitis and pancreatic injury, A Guide for Physicians, Peter, pp. 320–321 (2000).

    [3] A. Warshaw, "A practical guide to pancreatitis," Gastroenterology 86(5), 987 (1984).

    [4] W. Uhl, A. Warshaw, "IAP guidelines for the surgical management of acute pancreatitis," Pancreatology 2, 565 (2002).

    [5] M. D. Menger, H. Bonkhoff, B. Vollmar, "Ischemiareperfusion-induced pancreatic microvascular injury. An intravital fluorescence microscopic study in rats," Dig. Dis. Sci. 41(5), 823 (1996).

    [6] V. Doblhoff-Dier, L. Schmetterer, W. Vilser, G. Garh€ofer, M. Gr€oschl, R. Leitgeb, R. Werkmeister, "Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes," Biomed. Opt. Exp. 5(2), 630–642 (2014).

    [7] Y. Huang, Z. Ibrahim, D. Tong, S. Zhu, Q. Mao, J. Pang, W. P. A. Lee, G. Brandacher, J. U. Kang, "Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourierdomain Doppler optical coherence tomography," J. Biomed. Opt. 18(11), 111404 (2013).

    [8] Z. Chen, T. E. Milner, X. Wang, S. Srinivas, J. S. Nelson, "Optical doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy," Photochem. Photobiol. 67(1), 56–60 (1998).

    [9] J. D. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22(4), 35–66 (2001).

    [10] H. Cheng, Q. Luo, S. Zeng, S. Chen, W. Luo, H. Gong, "Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle," Appl. Opt. 43(31), 5772–5777 (2004).

    [11] D. A. Zimnyakov, O. V. Ushakova, D. J. Briers, V. V. Tuchin, Speckle technologies for monitoring and imaging of tissues and tissue-like phantoms, Handbook of Optical Biomedical Diagnostics, Methods, 2nd Edition, V. V. Tuchin, Ed., p. 495, SPIE Press, PM263, Bellingham, WA, USA (2016).

    [12] D. K. Tuchina, P. A. Timoshina, V. V. Tuchin, A. N. Bashkatov, E. A. Genina, "Kinetics of rat skin optical clearing at topical application of 40%glucose: Ex vivo and in vivo studies," IEEE J. Sel. Top. Quantum Electron. 25(1), 7200508 (2019).

    [13] A. K. Dunn, "Laser speckle contrast imaging of cerebral blood flow," Ann. Biomed. Eng. 40(2), 367–377 (2012).

    [14] E. B. Postnikov, M. O. Tsoy, P. A. Timoshina, D. E. Postnov, "Gaussian sliding window for robust processing laser speckle contrast images," Int. J. Numer. Meth. Biomed. Eng. 35(4), e3186 (2019).

    [15] H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, H. Gong, "Modified laser speckle imaging method with improved spatial resolution," J. Biomed. Opt. 8(3), 559–564 (2003).

    [16] D. A. Zimnyakov, A. B. Pravdin, L. V. Kuznetsova, V. I. Kochubey, V. V. Tuchin, "Peculiarities of the diffusion of light in a dense random medium near the edge of fundamental absorption band," J. Opt. Soc. Am. A 24, 711–723 (2007).

    [17] P. A. Dyachenko, D. A. Alexandrov, A. B. Bucharskaya, V. V. Tuchin, Speckle-contrast imaging of pathological tissue microhemodynamics in the development of various diabetes models, Prog. Biomed. Opt. Imag. Proc. SPIE 11457 (2020).

    [18] E. I. Galanzha, G. E. Brill, Y. Aizu, S. S. Ulyanov, V. V. Tuchin, Handbook of Optical Biomedical Diagnostics, pp. 881–938, SPIE Press, Bellingham (2002).

    [19] D. A. Boas, A. K. Dunn, "Laser speckle contrast imaging in biomedical optics," J. Biomed Opt. 15(1), 011109 (2010).

    [20] S. Yuan, A. Devor, D. A. Boas, A. K. Dunn, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," Appl. Opt. 44, 823, 1830 (2005).

    [21] Z. Wang, Q. Luo, H. Cheng, W. Luo, Q. Lu, "Blood flow activation in rat somatosensory cortex under sciatic nerve stimulation revealed by laser speckle imaging," Nat. Sci. 13(7), 522–527 (2003).

    [22] J. D. Briers, S. Webster, "Laser speckle contrast analysis (LASCA): A non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1(2), 174–179 (1996).

    [23] Y. Atchia, H. Levy, S. Dufour, O. Levi, "Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source," Appl. Opt. 52(7), 64–71 (2013).

    [24] K. Khaksari, S. J. Kirkpatrick, "Laser speckle contrast imaging is sensitive to advective flux," J. Biomed. Opt. 21(7), 076001 (2016).

    [25] K. Khaksari, S. J. Kirkpatrick, "Combined effects of scattering and absorption on laser speckle contrast imaging," J. Biomed. Opt. 21(7), 076002 (2016).

    [26] V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, H. Oh, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, Y. Yang, "Finger tissue model and blood perfused skin tissue phantom," Proc. SPIE 7898, 78980Z (2011).

    [27] P. A. Timoshina, A. B. Bucharskaya, D. A. Alexandrov, "Study of blood microcirculation of pancreas in rats with alloxan diabetes by laser speckle contrast imaging," J. Biomed. Photon. Eng. 3(2), 020301 (2017).

    [28] M. A. Vilensky, O. V. Semyachkina-Glushkovskaya, P. A. Timoshina, Ya. V. Kuznetsova, I. A. Semyachkin-Glushkovsky, D. N. Agafonov, V. V. Tuchin, "Laser speckle imaging of blood microcirculation in the brain cortex of laboratory rats in stress," Quantum Electron. 42(6), 489–494 (2012).

    [29] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, V. V. Tuchin, "Optical properties of human colon tissues in the 350 – 2500 nm spectral range," Quantum Electron. 44(8), 779–784 (2014).

    [30] A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Y. Gorodkov, V. V. Tuchin, "Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm," Opt. Spectrosc. 120(1), 1–8 (2016).

    [31] K. Celiński, M. Szczerbiński, M. Slomka, B. Kasztelan-Szczerbińska, "The role of adenosine receptors for pancreatic blood flow in caerulein-induced acute pancreatitis," Rocz. Akad. Med. Bialymst. 48, 57–60 (2003).

    [32] T. Kiris, S. Akbulut, A. Kiris, Z. Gucin, O. Karatere, G. B. Ates, H. O. Tabakoglu, "Optical characterization of pancreatic normal and tumor tissues with double integrating sphere system," Proc. SPIE 9321, 932116 (2015).

    [33] R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, M.-A. Mycek, "Optical spectroscopy detects histological hallmarks of pancreatic cancer," Opt. Exp. 17(20), 17502–17516 (2009).

    [34] L. Kou, D. Labrie, P. Chylek, "Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range," Appl. Opt. 32(19), 3531–3540 (1993).

    [35] O. S. Khalil, "Spectroscopic and clinical aspects of noninvasive glucose measurements," Clin. Chem. 45(2), 165–177 (1999).

    [36] P. L. Walling, J. M. Dabney, "Moisture in skin by near-infrared reflectance spectgroscopy," J. Soc. Cosmet. Chem. 40, 151–171 (1989).

    [37] D. L. Vandermeulen, N. Ressler, "A near-infrared analysis of water macromolecule interactions: Hydration and the spectra of aqueous solutions of intact proteins," Arch. Biochem. Biophys. 199(1), 197–205 (1980).

    [38] N. Bosschaart, G. J. Edelman, M. C. G. Aalders, van T. G. Leeuwen, D. J. Faber, "A literature review and novel theoretical approach on the optical properties of whole blood," Lasers Med. Sci. 29, 453–479 (2014).

    [39] R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, A. J. Durkin, "Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization," J. Biomed. Opt. 20(3), 030901 (2015).

    [40] R. Nachabe, van der J. W. A. Hoorn, van de R. Molengraaf, R. Lamerichs, J. Pikkemaat, C. F. Sio, B. H. W. Hendriks, H. J. C. M. Sterenborg, "Validation of interventional fiber optic spectroscopy with MR spectroscopy, MAS-NMR spectroscopy, high-performance thin-layer chromatography, and histopathology for accurate hepatic fat quantification," Invest. Radiol. 47(4), 209–216 (2012).

    [41] D. M. Wieliczka, S. Weng, M. R. Querry, "Wedge shaped cell for highly absorbent liquids: infrared optical constants of water," Appl. Opt. 28, 1714–1719 (1989).

    [42] G. M. Hale, M. R. Querry, "Optical constants of water in the 200 nm to 200 μm wavelength region," Appl. Opt. 12, 555–563 (1973).

    [43] S. A. Prahl, M. J. C. van Gemert, A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559–568 (1993).

    [44] J. H. Torres, A. J. Welch, I. Cilesiz, M. Motamedi, "Tissue optical property measurements: overestimation of absorption coe±cient with spectrophotometric techniques," Lasers Surg. Med. 14, 249–257 (1994).

    [45] D. Zhu, W. Lu, S. Zeng, Q. Luo, "Effect of light losses of sample between two integrating spheres on optical properties estimation," J. Biomed. Opt. 12(6), 064004 (2007).

    [46] R. Reif, O. A'Amar, I. J. Bigio, "Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media," Appl. Opt. 46(29), 7317–7328 (2007).

    [47] X. D. Wang, X. M. Deng, P. Haraldsen, R. Andersson, I. Ihse, "Antioxidant and calcium channel blockers counteract endothelial barrier injury induced by acute pancreatitis in rats," Scand. J. Gastroenterol. 30(11), 1129–1136 (1995).

    [48] G. Wallner, M. Solecki, C. G. Ziemiakowicz, P. Dyndor, R. Maciejewski, "Morphological changes of the pancreas in course acute pancreatitis during treatment with Ulinastatin," Pol. J. Surg. 85(3), 114–122 (2013).

    [49] S. Yu. Shchyogolev, "Inverse problems of spectroturbidimetry of biological disperse systems: An overview," J. Biomed. Opt. 4(4), 490–503 (1999).

    [50] J. M. Schmitt, G. Kumar, "Optical scattering properties of soft tissue: A discrete particle model," Appl. Opt. 37, 2788–2797 (1998).

    [51] R. K. Wang, "Modelling optical properties of soft tissue by fractal distribution of scatterers," J. Mod. Opt. 47, 103–120 (2000).

    [52] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm", J. Phys. D. Appl. Phys. 38(15), 2543–2555 (2005).

    [53] A. N. Bashkatov, E. A. Genina, V. V. Tuchin, Tissue optical properties, Handbook of Biomedical Optics, Chap. 5, D. A. Boas, C. Pitris, N. Ramanujam, Eds., pp. 67–100, Taylor & Francis Group, LLC, CRC Press Inc. (2011).

    [54] N. Honda, K. Ishii, Y. Kajimoto, T. Kuroiwa, K. Awazu, "Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid," J. Biomed. Opt. 23(7), 075006 (2018).

    [55] A. N. Bashkatov, E. A. Genina, V. V. Tuchin, "Optical properties of skin, subcutaneous, and muscle tissues: a review," J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).

    [56] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, "Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: Prognosis for gastroenterology," Med. Laser Appl. 22, 95–104 (2007).

    [57] J.-P. Ritz, A. Roggan, C. Isbert, G. Muller, H. Buhr, C.-T. Germer, "Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm," Lasers Surg. Med. 29, 205–212 (2001).

    [58] Y. Du, X. H. Hu, M. Cariveau, G. W. Kalmus, J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167–181 (2001).

    [59] Q. Fu, W. Sun, "Mie theory for light scattering by a spherical particle in an absorbing medium," Appl. Opt. 40(9), 1354–1361 (2001).

    [60] W. Sun, N. G. Loeb, B. Lin, "Light scattering by an infinite circular cylinder immersed in an absorbing medium," Appl. Opt. 44(12), 2338–2342 (2005).

    [61] A. N. Bashkatov, D. M. Zhestkov, E. A. Genina, V. V. Tuchin, "Immersion clearing of human blood in the visible and near-infrared spectral regions," Opt. Spectrosc. 98(4), 638–646 (2005).

    [62] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd Edition, SPIE Press, Washington, Bellingham, Vol. PM254, p. 988 (2015).

    [63] S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, T. Y. Ohulchanskyy, "Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications," J. Biophoton. 11(12), e201800141 (2018).

    P. A. Dyachenko , [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Laser speckle contrast imaging for monitoring of acute pancreatitis at ischemia–reperfusion injury of the pancreas in rats[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2242002
    Download Citation