[1] J Burschka, N Pellet, S Moon et al. Sequential deposition as a route to high-performan perovskite-sensitized solar cells. Nature, 499, 316(2013).
[2] S Stranks, G Eperon, G Grancini et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341(2013).
[3] Q Dong, Y Fang, Y Shao et al. Electron-hole diffusion lengths >175
[4] M Green, E Dunlop, J Hohl-Ebinger et al. Solar cell efficiency tables (version 56). Prog Photovoltaics, 28, 629(2020).
[5] X Jia, C Zuo, S Tao et al. CsPb(I
[6] A Marronnier, G Roma, S Boyer-Richard et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano, 12, 3477(2018).
[7] S Xiang, Z Fu, W Li et al. Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett, 3, 1824(2018).
[8] Z Fang, X Meng, C Zuo et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 64, 1743(2019).
[9] C Liu, W Li, C Zhang et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc, 140, 3825(2018).
[10] Q Zeng, L Liu, Z Xiao et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 64, 885(2019).
[11] L Zhou, X Guo, Z Lin et al. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy, 60, 583(2019).
[12] H Rao, S Ye, F Gu et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv Energy Mater, 8, 1800758(2018).
[13] Y Gao, Y Dong, K Huang et al. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing. ACS Photonics, 5, 4104(2018).
[14] B Suarez, V Gonzalez-Pedro, T Ripolles et al. Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J Phys Chem Lett, 5, 1628(2014).
[15] W Tress, N Marinova, O Inganas et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv Energy Mater, 5, 1400812(2015).
[16] Q Wang, C Bi, J Huang. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy, 15, 275(2015).
[17] Y Kim, E Jung, G Kim et al. Sequentially fluorinated PTAA polymers for enhancing
[18] J Ran, P Yuan, H Xie et al. Triphenylamine-polystyrene blends for perovskite solar cells with simultaneous energy loss suppression and stability improvement. Sol RRL, 4, 2000490(2020).
[19] L Meng, C Sun, R Wang et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J Am Chem Soc, 140, 17255(2018).
[20] L Yan, Q Xue, M Liu et al. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv Mater, 30, 1802509(2018).