• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 5, 593 (2021)
Yuan CAO1、2、*, Jie PENG1, Ruifeng WANG1, Kun LIU1, and Xiaoming GAO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.05.004 Cite this Article
    CAO Yuan, PENG Jie, WANG Ruifeng, LIU Kun, GAO Xiaoming. Research progress of photoacoustic spectroscopy for aerosol optical absorption measurement[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 593 Copy Citation Text show less
    References

    [1] Lack D A, Cappa C D, Cross E S, et al. Absorption enhancement of coated absorbing aerosols: Validation of the photo-acoustic technique for measuring the enhancement [J]. Aerosol Science and Technology, 2009, 43(10): 1006-1012.

    [2] Cappa C D, Onasch T B, Massoli P, et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon [J]. Science, 2012, 337(6098): 1078-1081.

    [3] IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    [4] Moosmüller H, Chakrabarty R K, Arnott W P. Aerosol light absorption and its measurement: A review [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(11): 844-878.

    [5] Radney J G, You R, Zachariah M R, et al. Direct in situ mass specific absorption spectra of biomass burning particles generated from smoldering hard and softwoods [J]. Environmental Science & Technology, 2017, 51(10): 5622-5629.

    [6] Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols [J]. Nature, 2001, 409(6821): 695-697.

    [7] Andreae M O, Gelencsér A. Black carbon or brown carbon ? The nature of light-absorbing carbonaceous aerosols [J]. Atmospheric Chemistry and Physics, 2006, 6(10): 3131-3148.

    [8] Lack D A, Lovejoy E R, Baynard T, et al. Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments [J]. Aerosol Science and Technology, 2006, 40(9): 697-708.

    [9] Cremer J W, Covert P A, Parmentier E A, et al. Direct measurement of photoacoustic signal sensitivity to aerosol particle size [J]. The Journal of Physical Chemistry Letters, 2017, 8(14): 3398-3403.

    [10] Gerber H E. Portable cell for simultaneously measuring the coefficients of light scattering and extinction for ambient aerosols [J]. Applied Optics, 1979, 18(7): 1009-1014.

    [11] Xu X Z, Zhao W X, Fang B, et al. Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols [J]. Optics Express, 2018, 26(25): 33484-33500.

    [12] Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy [J]. Aerosol Science and Technology, 2011, 45(11): 1305-1318.

    [13] Fischer D A, Smith G D. A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption [J]. Aerosol Science and Technology, 2018, 52(4): 393-406.

    [14] Bell A G. On the production and reproduction of sound by light [J]. American Journal of Science, 1880, 20(118): 305-324.

    [15] Roy S, Diveky M E, Signorell R. Mass accommodation coefficients of water on organics from complementary photoacoustic and light scattering measurements on laser-trapped droplets [J]. The Journal of Physical Chemistry C, 2020, 124(4): 2481-2489.

    [16] Baumann B, Wolff M, Kost B, et al. Finite element calculation of photoacoustic signals [J]. Applied Optics, 2007, 46(7): 1120-1125.

    [17] El-Busaidy S A S, Baumann B, Wolff M, et al. Modelling of open photoacoustic resonators [J]. Photoacoustics, 2020, 18: 100161.

    [18] Arnott W P, Moosmller H, Rogers C F, et al. Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description [J]. Atmospheric Environment, 1999, 33(17): 2845-2852.

    [19] Radney J G, Zangmeister C D. Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy [J]. Analytical Chemistry, 2015, 87(14): 7356-7363.

    [20] Wiegand J R, Mathews L D, Smith G D. A UV-Vis photoacoustic spectrophotometer [J]. Analytical Chemistry, 2014, 86(12): 6049-6056.

    [21] Yu Z, Magoon G, Assif J, et al. A single-pass RGB differential photoacoustic spectrometer (RGB-DPAS) for aerosol absorption measurement at 473, 532, and 671 nm [J]. Aerosol Science and Technology, 2019, 53(1): 94-105.

    [22] Haisch C, Menzenbach P, Bladt H, et al. A wide spectral range photoacoustic aerosol absorption spectrometer [J]. Analytical Chemistry, 2012, 84(21): 8941-8945.

    [23] Ajtai T, Filep , Schnaiter M, et al. A novel multi-wavelength photoacoustic spectrometer for the measurement of the UV-vis-NIR spectral absorption coefficient of atmospheric aerosols [J]. Journal of Aerosol Science, 2010, 41(11): 1020-1029.

    [24] Diveky M E, Roy S, Cremer J W, et al. Assessing relative humidity dependent photoacoustics to retrieve mass accommodation coefficients of single optically trapped aerosol particles [J]. Physical Chemistry Chemical Physics, 2019, 21(9): 4721-4731.

    [25] Cremer J W, Thaler K M, Haisch C, et al. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics [J]. Nature Communications, 2016, 7: 10941.

    [26] Cao Y, Liu K, Wang R F, et al. Three-wavelength measurement of aerosol absorption using amulti-resonator coupled photoacoustic spectrometer [J]. Optics Express, 2021, 29(2): 2258-2269.

    [27] Cao Y, Liu Q, Wang R F, et al. Development of a 443 nm diode laser-based differential photoacoustic spectrometer for simultaneous measurements of aerosol absorption and NO2 [J]. Photoacoustics, 2021, 21: 100229.

    [28] Liu Q, Niu M S, Wang G S, et al. Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols [J]. Spectroscopy and Spectral Analysis, 2013, 33(7): 1729-1733.

    [29] Liu Q, Huang H H, Wang Y, et al. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer [J]. Chinese Physics B, 2014, 23(6): 064205.

    [30] Liu Q, Wang G S, Liu K, et al. Measurements of atmospheric aerosol optical absorption coefficients using photoacoustic spectrometer [J]. Infrared and Laser Engineering, 2014, 43(9): 3010-3014.

    [31] Chen J, Qian X M, Liu Q, et al. Research on optical absorption characteristics of atmospheric aerosols at 1064 nm wavelength [J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 2989-2995.

    [32] Liu K, Cao Y, Wang G S, et al. A novel photoacoustic spectroscopy gas sensor using a low cost polyvinylidene fluoride film [J]. Sensors and Actuators B: Chemical, 2018, 277: 571-575.

    [33] Wu H P, Yin X K, Dong L, et al. Ppb-level nitric oxide photoacoustic sensor based on a mid-IR quantum cascade laser operating at 52 °C [J]. Sensors and Actuators B: Chemical, 2019, 290: 426-433.

    [34] Ma Y F, Qiao S D, He Y, et al. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser [J]. Optics Express, 2019, 27(10): 14163-14172.

    [35] Wang Q, Wang Z, Chang J, et al. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing [J]. Optics Letters, 2017, 42(11): 2114-2117.

    [36] Ma Y F, Lewicki R, Razeghi M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL [J]. Optics Express, 2013, 21(1): 1008-1019.

    [37] Bruce C W, Pinnick R G. In-situmeasurements of aerosol absorption with a resonant CW laser spectrophone [J]. Applied Optics, 1977, 16(7): 1762-1765.

    [38] Terhune R W, Anderson J E. Spectrophone measurements of the absorption of visible light by aerosols in the atmosphere [J]. Optics Letters, 1977, 1(2): 70-72.

    [39] Petzold A, Niessner R. Novel design of a resonant photoacoustic spectrophone for elemental carbon mass monitoring [J]. Applied Physics Letters, 1995, 66(10): 1285-1287.

    [40] Arnott W P, Walker J W, Moosmüller H, et al. Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbation experiments [J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D5): D05S02.

    [41] Lewis K, Arnott W P, Moosmüller H, et al. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument [J]. Journal of Geophysical Research Atmospheres, 2008, 113(D16): D16203.

    [42] Lack D A, Richardson M S, Law D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, Part 2: Black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy [J]. Aerosol Science and Technology, 2012, 46(5): 555-568.

    [43] Lack D A, Langridge J M, Bahreini R, et al. Brown carbon and internal mixing in biomass burning particles [C]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37): 14802-14807.

    [44] Sharma N, Arnold I J, Moosmüller H, et al. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source [J]. Atmospheric Measurement Techniques, 2013, 6(12): 3501-3513.

    [45] Zhu W Y, Liu Q, Wu Y. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer [J]. Optics Express, 2015, 23(18): 23108-23116.

    [46] Yu Z H, Assif J, Magoon G, et al. Differential photoacoustic spectroscopic (DPAS)-based technique for PM optical absorption measurements in the presence of light absorbing gaseous species [J]. Aerosol Science and Technology, 2017, 51(12): 1438-1447.

    [47] Wang G, Kulinski P, Hubert P, et al. Filter-free light absorption measurement of volcanic ashes and ambient particulate matter using multi-wavelength photoacoustic spectroscopy [J]. Progress in Electromagnetics Research, 2019, 166: 59-74.

    [48] Yin X K, Dong L, Wu H P, et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser [J]. Sensors and Actuators B: Chemical, 2017, 247: 329-335.

    [49] Cotterell M I, Orr-Ewing A J, Szpek K, et al. The impact of bath gas composition on the calibration of photoacoustic spectrometers with ozone at discrete visible wavelengths spanning the Chappuis band [J]. Atmospheric Measurement Techniques, 2019, 12(4): 2371-2385.

    [50] Bluvshtein N, Flores J M, He Q F, et al. Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols [J]. Atmospheric Measurement Techniques, 2017, 10(3): 1203-1213.

    [51] Haisch C. Photoacoustic spectroscopy for analytical measurements [J]. Measurement Science and Technology, 2012, 23(1): 012001.

    [52] Tian G X, Moosmüller H, Arnott W P. Simultaneous photoacoustic spectroscopy of aerosol and oxygen A-band absorption for the calibration of aerosol light absorption measurements [J]. Aerosol Science and Technology, 2009, 43(11): 1084-1090.

    [53] Gillis K A, Havey D K, Hodges J T. Standard photoacoustic spectrometer: Model and validation using O2 A-band spectra [J]. Review of Scientific Instruments, 2010, 81(6): 064902.

    [54] Havey D K, Bueno P A, Gillis K A, et al. Photoacoustic spectrometer with a calculable cell constant for measurements of gases and aerosols [J]. Analytical Chemistry, 2010, 82(19): 7935-7942.

    [55] Three-Wavelength Photoacoustic Soot Spectrometer (PASS-3) [z].

    [56] Liu K, Mei J X, Zhang W J, et al. Multi-resonator photoacoustic spectroscopy [J]. Sensors and Actuators B: Chemical, 2017, 251: 632-636.

    [57] Diveky M E, Roy S, David G, et al. Fundamental investigation of photoacoustic signal generation from single aerosol particles at varying relative humidity [J]. Photoacoustics, 2020, 18: 100170.

    CAO Yuan, PENG Jie, WANG Ruifeng, LIU Kun, GAO Xiaoming. Research progress of photoacoustic spectroscopy for aerosol optical absorption measurement[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 593
    Download Citation