• Acta Optica Sinica
  • Vol. 33, Issue 12, 1216001 (2013)
Wang Rong*, Zhang Haiyan, Wang Wenguang, and Liu Hui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201333.1216001 Cite this Article Set citation alerts
    Wang Rong, Zhang Haiyan, Wang Wenguang, Liu Hui. Improvement of Dye-Sensitized Solar Cells with TiO2 Nanoarray-TiO2/Graphene Nanocrystal Composite Film as Photoanode[J]. Acta Optica Sinica, 2013, 33(12): 1216001 Copy Citation Text show less
    References

    [1] B O′Regan, M Grtzel. A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 film [J]. Nature, 1991, 353(6346): 737-740.

    [2] M Grtzel. Dye sensitized solar cells [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145-153.

    [3] C J Barbé, F Arendse, P Comte, et al.. Nanocrystalline titanium oxide electrodes for photovoltaic application [J]. J Am Ceram Soc, 1997, 80(12): 3157-3171.

    [4] U Bach, D Lupo, P Comte, et al.. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature, 1998, 395(6702): 583-585.

    [5] Li Qinghua, Wang Yingmin, Li Wenjie, et al.. Application of the novel porous gel electrolyte in flexible quasi-solid-state dye-sensitized solar cell [J]. Acta Optica Sinica, 2012, 32(5): 0516001.

    [6] Zhang Jun, Zhang Jun, Geng Junjie, et al.. Application of PbS quantum dots in luminescent solar concentrator [J]. Acta Optica Sinica, 2012, 32(1): 0123003.

    [7] Yang Shaopeng, Zhao Yanxin, Han Lingjie, et al.. High-efficiency polymer solar cells without optical spacer [J]. Acta Optica Sinica, 2012, 32(5): 0531001.

    [8] X Q Meng, Y Wang, M L Wang, et al.. Improved performance of dye-sensitized solar cells with TiO2 nanocrystal/nanowires double-layered films as photoelectrode [J]. RSC Adv, 2013, 3(10): 3304-3308.

    [9] H Chang, M-J Kao, K D Huang, et al.. Application of TiO2 nanopaticles coated multi-wall carbon nanotube to dye-sensitized solar cells [J]. Journal of Nanoscience and Nanotechnology, 2010, 10(11): 7671-7675.

    [10] Cheng Cunxi, Lin Jianming, Xiao Yaoming, et al.. Preparation of titania nanowire and its application in flexible dye-sensitized solar cells [J]. Journal of Xiamen University (Natural Science), 2011, 50(S1): 105-108.

    [11] I Jung, D A Dikin, R D Piner, et al.. Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures [J]. Nano Lett, 2008, 8(12): 4283-4287.

    [12] A B Kaiser, C Gomez-Navarro, R S Sundaram, et al.. Electrical conduction mechanism in chemically derived graphene monolayers [J]. Nano Lett, 2009, 9(5): 1787-1792.

    [13] Xiang Jin, Ren Zhen, Wei Ying, et al.. Preparation of selenium/graphene oxide/titanium dioxide composite film and its photoelectric transformation performance [J]. Chemical Research, 2013, 24(1): 30-35.

    [14] Zhang Jiyuan, Tian Hanmin, Tian Zhipeng, et al.. Study on sol-hydrothermal synthesis of TiO2 nanoparticles and their photoelectric properties sensitized by dye [J]. Inorg Mater, 2009, 24(6): 1110-1114.

    [15] Q Wang, J E Moser, M Gratzel. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells [J]. J Phys Chem B, 2005, 109(31): 14945-14953.

    [16] J Zhang, M J Li, Z C Feng, et al.. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk [J]. J Phys Chem B, 2006, 110(2): 927-935.

    [17] Cheng Hui, Yao Jianghong, Cao Yaan. Photoelectric conversion efficiency of N719/TiO2-Inx%/FTO film electrodes incorporating in doped at the TiO2 surface [J]. Acta Physica-Chim Sin, 2012, 28(11): 2632-2640.

    [18] M Law, L E Greene, J C Johnson, et al.. Nanowire dye-sensitized solar cells [J]. Nat Mater, 2005, 4(6): 455-459.

    [19] C K Xu, P H Shin, L L Cao, et al.. Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells [J].Chem Mater, 2010, 22(1): 143-148.

    [20] H E Wang, Z H Chen, Y H Leung, et al.. Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates [J]. Appl Phys Lett, 2010, 96(26): 263104-263106.

    [21] B Liu, E S Aydil. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. J Am Chem Soc, 2009, 131(11): 3985-3990.

    [22] J G Yu, Q L Li, J J Fan, et al.. Fabrication and photovoltaic performance of hierarchically titanate tubular structures self-assembled by nanotubes and nanosheets [J]. Chem Commun, 2011, 47(32): 9161-9163.

    [23] J G Yu, J J Fan, B Cheng. Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films [J]. Journal of Power Sources, 2011, 196(18): 7891-7898.

    [24] Y Chiba, A Islam, Y Watanabe, et al.. Dye-sensitized solar cells with conversion efficiency of 11.1% [J]. Jpn J Appl Phys, 2006, 45(25): L638-L640.

    [25] J G Yu, J J Fan, Z Li. Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method [J]. Electrochim Acta, 2010, 55(1): 597-602.

    [26] J G Yu, J J Fan, K Lü. Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells [J]. Nanoscale, 2010, 2(10): 2144-2149.

    [27] K Schwartsburg, F Willig. Influence of trap filling on photocurrent transients in polycrystalline TiO2 [J]. Appl Phys Lett, 1991, 58(22): 2520-2522.

    [28] A C Fischer, L M Peter, E A Ponomarev, et al.. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells [J]. J Phys Chem B, 2000, 104(5): 949-958.

    [29] X M Qian, D Q Qin, Q Song, et al.. Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes [J]. Thin Solid Films, 2001, 385 (1-2): 152-161.

    CLP Journals

    [1] Xu Shunjian, Huang Yong, Zhong Wei, Xiao Zonghu, Luo Yongping, Ou Hui. Synthesis of TiO2-PEDOTPSS Nanocomposite Film and Its Application for Dye-Sensitized Solar Cells as Counter Electrode[J]. Acta Optica Sinica, 2014, 34(9): 931001

    [2] Zhang Juhua, Feng Qing, Zhu Hongqiang, Yang Ying. First-Principles Study on Rutile TiO2 Photocatalyst Co-doped with N and Cu[J]. Chinese Journal of Lasers, 2015, 42(6): 606001

    [3] Zhang Juhua, Feng Qing, Zhou Qing, Yang Ying. Electronic Properties and Spectrum Redshift Effect of Rutile TiO2 Co-doped with Double Transition Metal Copper and Chromium[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71602

    Wang Rong, Zhang Haiyan, Wang Wenguang, Liu Hui. Improvement of Dye-Sensitized Solar Cells with TiO2 Nanoarray-TiO2/Graphene Nanocrystal Composite Film as Photoanode[J]. Acta Optica Sinica, 2013, 33(12): 1216001
    Download Citation