• Chinese Journal of Quantum Electronics
  • Vol. 21, Issue 6, 706 (2004)
[in Chinese]1、2、* and [in Chinese]1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese]. Quantum communication and quantum computation[J]. Chinese Journal of Quantum Electronics, 2004, 21(6): 706 Copy Citation Text show less
    References

    [1] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete [J]. Phys. Rev., 1935, 47: 777-780.

    [3] Clauser J F, et al. Proposed experiment to test local hidden-variable theories [J]. Phys. Rev. Lett., 1969, 23: 880.

    [4] White A G, James D F V, Eberhard P H, et al. Nonmaximally entangled states: production, characterization,and utilization [J]. Phys. Rev. Lett., 1999, 83(16): 3103-3107.

    [5] Sackett C A, Kielpinski D, King B E, et al. Experimental entanglement of four particles [J]. Nature, 2000,404(6775): 256-259.

    [6] Eibl M, Kiesel N, Bourennane M, et al. Experimental realization of a three-qubit entangled W state [J]. Phys. Rev.Lett., 2004, 92(7): 077901;Bourennane M, Eibl M, Kurtsiefer C, et al. Experimental detection of multipartite entanglement using witness operators [J]. Phys. Rev. Lett., 2004, 92(8): 087902.

    [7] Wootters W K, Zurek W H. A single quantum cannot be cloned [J]. Nature, 1982, 299: 802-803.

    [8] Barnum H, Caves C M, Fuchs C A, et al. Noncommuting mixed states cannot be broadcast [J]. Phys. Rev. Lett.,1996, 76(15): 2818-2821.

    [9] Koashi M, Imoto N. No-cloning theorem of entangled states [J]. Phys. Rev. Lett., 1998, 81(19): 4264-4267.

    [10] Mor T. No cloning of orthogonal states in composite systems [J]. Phys. Rev. Lett., 1998, 80(14): 3137-3140.

    [11] Cochrane P T, Ralph T C, Dolinska A. Optimal cloning for finite distributions of coherent states[J]. Phys. Rev.A, 2004, 69(4): 042313.

    [12] Buzek V, et al. Quantum copying: beyond the no-cloning theorem [J]. Phys. Rev. A, 1996, 54( 3 ): 1844-1852.

    [13] Buzek V, Braunstein S L, et al. Quantum copying: a network [J]. Phys. Rev. A, 1997, 656(5): 3446-3452.

    [14] Huang Y F, Li W L, Li C F, et al. Optical realization of universal quantum cloning [J]. Phys. Rev. A, 2001,64(1): 012315.

    [15] Duan L M, Guo G C. Probabilistic cloning and identification of linearly independent quantum states [J]. Phys.Rev. Lett., 1998, 80(22): 4999-5002.

    [16] Duan L M, Guo G C. A probabilistic cloning machine for replicating two non-orthogonal states [J]. Phys. Lett.A, 1998, 243(5-6): 261-264.

    [18] Bennett C H, Brassard G. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing [C]// Bangalore, New York: IEEE, 1984, 175.

    [19] Bennett C H. Quantum cryptography using any 2 nonorthogonal states [J]. Phys. Rev. Lett., 1992, 68(21):3121-3124.

    [20] Ekert A K. Quantum cryptography based on Bell theorem [J]. Phys. Rev. Lett., 1991, 67(6): 661-663.

    [21] Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states [J]. Phys. Rev. Lett., 1995, 75(7):1239-1243.

    [22] Koashi M, Imoto N. Quantum cryptography based on split transmission of one-bit information in two steps [J].Phys. Rev. Lett., 1997, 79(12): 2383-2386.

    [23] Bruss D. Optimal eavesdropping in quantum cryptography with six states [J]. Phys. Rev. Lett., 1998, 81(14):3018-3021.

    [24] Bechmann-Pasquinucci H, Peres A, Quantum cryptography with 3-state systems [J]. Phys. Rev. Lett., 2000,85(15): 3313-3316.

    [25] Ralph T C. Continuous variable quantum cryptography [J]. Phys. Rev. A, 2000, 61(1): 010303.

    [26] Zhang Y S, Li C F, Guo G C. Quantum key distribution via quantum encryption [J]. Phys. Rev. A, 2001, 64(2):024302.

    [27] Gui Youzhen. Theoretical and Experimental Research on Long-Distance Optical Fiber Quantum Key Distribution System [D]. Doctor Dissertation of University of Science and Technology of China. 2004, 7-26 (in Chinese).

    [28] Acin A, Gisin N, Scarani V. Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks [J]. Phys. Rev. A, 2004, 69(1): 012309.

    [29] Scarani V, Acin A, Ribordy G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations [J]. Phys. Rev. Lett., 2004, 92(5): 057901.

    [30] Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel [J]. Phys. Rev. Lett., 2004, 92(1): 017901.

    [31] Bennett C H, Brassard G. SIGACT News, 1989, 20: 78.

    [32] Kimura T, Nambu Y, Hatanaka T, et al. Single-photon interference over 150 km transmission using silica-based integrated-optic interferometers for quantum cryptography [OL]. e-print quant-ph / 0403104.

    [33] Kurtsiefer C, Zarda P, et al. A step towards global key distribution [J]. Nature, 2002, 419(6906): 450-450.

    [34] Braunstein S L, Kimble H J. Dense coding for continuous variables [J]. Phys. Rev. A, 2000, 61( 4 ): 042302.

    [35] Zhang J, Peng K C, Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state [J]. Phys. Rev. A, 2000, 62( 6 ): 064302.

    [36] Gui Y Z, Han Z F, Mo X F, et al. Experimental quantum key distribution over 14.8 km in a special optical fibre [J]. Chinese Phys. Lett., 2003, 20(5): 608-610.

    [37] Gui Y Z, Mo X F, Han Z F, et al. Experimental demonstration of the performance of quantum key distribution system at 1550 nm [J]. Submitted to International Journal of Quantum Information.

    [39] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70 (13): 1895-1899.

    [40] Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching [J]. Phys. Rev. A, 2000, 61(3): 034301.

    [41] Bouwmeester D, Pan J W, et al. Experimental quantum teleportation [J]. Nature, 1997, 390 (6660): 575-579.

    [42] Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1998, 80(6): 1121-1125.

    [43] Furusawa A, Sorensen J L, Braunstein S L, et al. Unconditional quantum teleportation [J]. Science , 1998,282(5389): 706-709.

    [44] Nielsen M A, Knill E, Laflamme R. Complete quantum teleportation using nuclear magnetic resonance [J]. Nature,1998, 396(6706): 52-55.

    [45] Kim Y H, Kulik S P, Shih Y H. Quantum teleportation of a polarization state with a complete Bell state measurement [J]. Phys. Rev. Lett., 2001, 86(7): 1370-1373.

    [46] Lombardi E, Sciarrino F, Popescu S, et al. Teleportation of a vacuum-one-photon qubit [J]. Phys. Rev. Lett.,2002, 88 (7): 070402.

    [47] Pan J W, Gasparoni S, Aspelmeyer M, et al. Experimental realization of freely propagating teleported qubits [J].Nature, 2003, 421(6924): 721-725.

    [48] de Riedmatten H, Marcikic I, Tittel W, et al. Long distance quantum teleportation in a quantum relay configuration [J]. Phys. Rev. Lett., 2004, 92(4): 047904.

    [49] Preskill J. Quantum Information and Quantum Computation [M]. California Institute of Technology, 1998.

    [50] Shor P W. Algorithms for quantum computation discretelog and factoring [C]// Proc. of the 35th Annual Symposium on the Foundations of Computer Science, (IEEE Computer Society Press, Los Alamitos, CA) 1994, 124.

    [51] Grover L K. Quantum mechanics algorithm for database search [C]//Proc. of the 28th, ACM Symposium on the Theory of Computation, ACM Press, New York: 1996, 212.

    [52] Simon D. in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, (IEEE computer Society Press, Los Alamitos,CA) 1994, 116.

    [54] Vandersypen L M K, Steffen M, Breyta G, et al. Experimental realization of an order-finding algorithm with a NMR quantum computer [J]. Phys. Rev. Lett., 2000, 85(25): 5452-5455.

    [55] Vandersypen L M K, Steffen M, Breyta G, et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance [J]. Nature, 2001, 414 (6866): 883-887.

    [56] Grover L K. Quantum machanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett., 1997, 79(2):325-328.

    [57] Chuang I L, Gershenfeld N, Kubinec M. Experimental implementation of fast quantum searching [J]. Phys. Rev.Lett., 1998, 80(215): 3408-3411.

    [58] Jones J A, Mosca M, Hansen R H. Implementation of quantum search algorithm on a quantum computer [J].Nature, 1998, 393 (6683): 344-346.

    [59] Kwiat P G, Mitchell J R, Schwindt P D D, et al. Grover's search algorithm: an optical approach [J]. J. Mod.Optic., 2000, 47(2-3): 257-266.

    [60] Bulger D, Baritompa W P, Wood G R. Implementing pure adaptive search with Grover's quantum algorithm [J].J. Optimiz. Theory. APP., 2003, 116(3): 517-529.

    [61] Zhang Yong. Theoretical Research on Quantum-noise Control in Quantum Computer [D]. Doctor Dissertation of University of Science and Technology of China. 2004, 6-15 (in Chinese).

    [62] Cirac J I, Zoller P. Quantum computations with cold trappedions [J]. Phys. Rev. Lett., 1995, 874( 20): 4091-4094.

    [63] Steane A. The ion trap quantum information processor [J]. Appl. Phys. B-lasers., 1997, 64(6): 623-642.

    [64] Deutsch I H, Brennen G K, Jessen P S. Quantum computing with neutral atoms in an optical lattice [J]. Fortschr Phys., 2000, 48(9-11): 925-943.

    [65] Briegel H J, Calarco T, Jaksch D, et al. Quantum computing with neutral atoms [J]. J. Mod. Opt., 2000, 47(2-3):415-451.

    [66] Takeuchi S. Experimental demonstrtion of a three-qubit quantum computation algorithm using a single photon and linear optics [J]. Phys. Rev. A, 2000, 612(3): 032301.

    [67] Barenco A, Deutsch D, Ekert A. Conditional quantum dynamics and logic gates [J]. Phys. Rev. Lett., 1995,74(20): 4083-4086.

    [68] Sleator T, Weinfurter H. Realizable universal quantum logic gates [J]. Phys. Rev. Lett., 1995, 74(20): 4087-4090.

    [69] Loss D, Divincenzo D P. Quantum computation with quantum dots [J]. Phys. Rev. A, 1998, 57(1): 120-126.

    [70] Kane B E. A silicon-based nuclear spin quantum computer [J]. Nature, 1998, 393 (6681): 133-137.

    [71] Pazy E, Biolatti E, Calarco T, et al. Spin-based optical quantum computation via pauli blocking in semiconductor quantum dots [J]. Europhys. Lett., 2003, 62(2): 175-181.

    [72] Makhlin Y, Schon G, Shnirman A. Quantum state engineering with Josephson-junction devices [J]. Rev. Mod.Phys., 2001, 73(2): 357-400.

    [73] Schack R, Caves C M. Classical model for bulk-ensemble NMR quantum computation [J]. Phys. Rev. A, 1999,60(16): 4354-4362.

    CLP Journals

    [1] GUO Mengqi, GONG Longyan. Quantum violation of I3322 inequality[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 50

    [2] Arapat Ablimit, YANG Fan, Dildar Hitjan, Aynisa Yasin, BAI Huiting, Aziza Abdukerim, Ahmad Abliz. Quantum coherence evolution of Heisenberg XXZ spin chain within non-Markovian environment[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 341

    [in Chinese], [in Chinese]. Quantum communication and quantum computation[J]. Chinese Journal of Quantum Electronics, 2004, 21(6): 706
    Download Citation