• Matter and Radiation at Extremes
  • Vol. 1, Issue 1, 82 (2016)
T. Toncian1、*, C. Wang1, E. McCary1, A. Meadows1, A.V. Arefiev1, J. Blakeney1, K. Serratto1, D. Kuk1, C. Chester1, R. Roycroft1, L. Gao1, H. Fu2, X.Q. Yan2, J. Schreiber3, I. Pomerantz1, A. Bernstein1, H. Quevedo1, G. Dyer1, T. Ditmire1, and B.M. Hegelich1
Author Affiliations
  • 1Department of Physics, University of Texas, Austin, TX, 78712, USA
  • 2State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
  • 3Fakultat fur Physik, Ludwig-Maximilians-University, Munich, Germany
  • show less
    DOI: 10.1016/j.mre.2015.11.001 Cite this Article
    T. Toncian, C. Wang, E. McCary, A. Meadows, A.V. Arefiev, J. Blakeney, K. Serratto, D. Kuk, C. Chester, R. Roycroft, L. Gao, H. Fu, X.Q. Yan, J. Schreiber, I. Pomerantz, A. Bernstein, H. Quevedo, G. Dyer, T. Ditmire, B.M. Hegelich. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas[J]. Matter and Radiation at Extremes, 2016, 1(1): 82 Copy Citation Text show less
    References

    [1] A. Pukhov, J. Meyer-ter-Vehn, Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations, Phys. Plasmas 5 (1998) 1880.

    [2] C. Gahn, G.D. Tsakiris, A. Pukhov, J. Meyer-ter-vehn, G. Pretzler, et al., Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels, Phys. Rev. Lett. 83 (1999) 4772.

    [3] F.N. Beg, A.R. Bell, A.E. Dangor, C.N. Danson, A.P. Fews, et al., A study of picosecond laseresolid interactions up to 1019 W cm -2, Phys. Plasmas 4 (1997) 447.

    [4] G. Malka, M.M. Aleonard, J.F. Chemin, G. Claverie, M.R. Harston, et al., Relativistic electron generation in interactions of a 30 TWlaser pulse with a thin foil target, Phys. Rev. E 66 (2002) 066402.

    [5] W.J. Ma, J.H. Bin, H.Y. Wang, M. Yeung, C. Kreuzer, et al., Bright subcycle extreme ultraviolet bursts from a single dense relativistic electron sheet, Phys. Rev. Lett. 113 (2014) 235002.

    [6] D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, et al., Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet, Nat. Commun. 4 (2013) 1763-1767.

    [7] T. Iwawaki, H. Habara, S. Baton, K. Morita, J. Fuchs, et al., Collimated fast electron beam generation in critical density plasma, Phys. Plasmas 21 (2014) 113103.

    [8] D. Kiefer, A. Henig, D. Jung, D.C. Gautier, K.A. Flippo, et al., First observation of quasi-monoenergetic electron bunches driven out of ultrathin diamond-like carbon (DLC) foils, Eur. Phys. J. D. 55 (2009) 427-432.

    [9] H.C. Wu, Phase-independent generation of relativistic electron sheets, Appl. Phys. Lett. 99 (2011) 021503.

    [10] H.C. Wu, J. meyer-ter-Vehn, The reflectivity of relativistic ultra-thin electron layers, Eur. Phys. J. D. 55 (2009) 443-449.

    [11] H.C. Wu, J. meyer-ter-Vehn, J. Fernandez, B.M. Hegelich, Uniform laser-driven relativistic electron layer for coherent Thomson scattering, Phys. Rev. Lett. 104 (2010) 234801.

    [12] V.V. Kulagin, V.A. Cherepenin, M.S. Hur, H. Suk, Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: dynamics of electrons in a linearly polarized external field, Phys. Plasmas 14 (2007) 113101.

    [13] D. Habs, M. Hegelich, J. Schreiber, M. Gross, A. Henig, et al., Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and g-ray beams, Appl. Phys. B 93 (2008) 349-354.

    [14] D. Wu, C.Y. Zheng, X.Q. Yan, M.Y. Yu, X.T. He, Breather-like penetration of ultrashort linearly polarized laser into over-dense plasmas, Phys. Plasmas 20 (2013) 033101.

    [15] W. Ma, V.K. Liechtenstein, J. Szerypo, D. Jung, P. Hilz, et al., Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven ion acceleration, Nucl. Inst. Methods Phys. Res. A 655 (2011) 53-56.

    [16] C. Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, C. Delfin, et al., Generating positrons with femtosecond-laser pulses, Appl. Phys. Lett. 77 (2000) 2662.

    [17] X. Wang, M. Krishnan, N. Saleh, H. Wang, D. Umstadter, Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas, Phys. Rev. Lett. 84 (2000) 5324-5327.

    [18] S. Fritzler, K. Ta Phuoc, V. Malka, A. Rousse, E. Lefebvre, Ultrashort electron bunches generated with high-intensity lasers: applications to injectors and x-ray sources, Appl. Phys. Lett. 83 (2003) 3888.

    [19] S.B. Liu, J. Zhang, W. Yu, Acceleration and double-peak spectrum of hot electrons in relativistic laser plasmas, Phys. Rev. E 60 (1999) 3279.

    [20] V. Malka, S. Fritzler, E. Lefebvre, M.M. Aleonard, F. Burgy, Electron acceleration by a wake field forced by an intense ultrashort laser pulse, Science 298 (NOVEMBER 2002) 1596e1600, http://dx.doi.org/10.1126/science.1078070.

    [21] C. Geddes, C. Toth, J. van Tilborg, E. Esarey, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature 431 (30 September 2004) 538e541, http://dx.doi.org/10.1038/nature02939.

    [22] S. Mangles, C.D. Murphy, Z. Najmudin, A. Thomas, Monoenergetic beams of relativistic electrons from intense lasereplasma interactions, Nature 431 (30 September 2004) 535e538, http://dx.doi.org/10.1038/nature02930.

    [23] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, A lasereplasma accelerator producing monoenergetic electron beams, Nature 431 (30 September 2004) 541e544, http://dx.doi.org/10.1038/nature02900.

    [24] W.P. Leemans, A.J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, et al., Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett. 113 (2014) 245002.

    [25] X. M. Wang, R. Zgadzaj, N. Fazel, Z. Y. Li, S. A. Yi, et al., Quasimonoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 4, 1e9 (1AD).

    [26] G.B. Zhang, Y.Y. Ma, H. Xu, N.A. Hafz, X.H. Yang, et al., Enhanced electron injection in laser-driven bubble acceleration by ultra-intense laser irradiating foil-gas targets, Phys. Plasmas 22 (2015) 083110.

    [27] T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion 57 (2015) 1-26.

    T. Toncian, C. Wang, E. McCary, A. Meadows, A.V. Arefiev, J. Blakeney, K. Serratto, D. Kuk, C. Chester, R. Roycroft, L. Gao, H. Fu, X.Q. Yan, J. Schreiber, I. Pomerantz, A. Bernstein, H. Quevedo, G. Dyer, T. Ditmire, B.M. Hegelich. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas[J]. Matter and Radiation at Extremes, 2016, 1(1): 82
    Download Citation